You are here
قراءة كتاب Town Geology
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
size of your head to that of your body, hurled at you by the frost-giants up above. If you go to the Alps at certain seasons, and hear the thunder of the falling rocks, and see their long lines—moraines, as they are called—sliding slowly down upon the surface of the glacier, then you will be ready to believe the geologist who tells you that frost, and probably frost alone, has hewn out such a peak as the Matterhorn from some vast table-land; and is hewing it down still, winter after winter, till some day, where the snow Alps now stand, there shall be rolling uplands of rich cultivable soil.
So much for the mechanical action of rain, in the shape of ice. Now a few words on its chemical action.
Rain water is seldom pure. It carries in it carbonic acid; and that acid, beating in shower after shower against the face of a cliff—especially if it be a limestone cliff—weathers the rock chemically; changing (in case of limestone) the insoluble carbonate of lime into a soluble bicarbonate, and carrying that away in water, which, however clear, is still hard. Hard water is usually water which has invisible lime in it; there are from ten to fifteen grains and more of lime in every gallon of limestone water. I leave you to calculate the enormous weight of lime which must be so carried down to the sea every year by a single limestone or chalk brook. You can calculate it, if you like, by ascertaining the weight of lime in each gallon, and the average quantity of water which comes down the stream in a day; and when your sum is done, you will be astonished to find it one not of many pounds, but probably of many tons, of solid lime, which you never suspected or missed from the hills around. Again, by the time the rain has sunk through the soil, it is still less pure. It carries with it not only carbonic acid, but acids produced by decaying vegetables—by the roots of the grasses and trees which grow above; and they dissolve the cement of the rock by chemical action, especially if the cement be lime or iron. You may see this for yourselves, again and again. You may see how the root of a tree, penetrating the earth, discolours the soil with which it is in contact. You may see how the whole rock, just below the soil, has often changed in colour from the compact rock below, if the soil be covered with a dense layer of peat or growing vegetables.
But there is another force at work, and quite as powerful as rain and rivers, making the soil of alluvial flats. Perhaps it has helped, likewise, to make the soil of all the lowlands in these isles—and that is, the waves of the sea.
If you ever go to Parkgate, in Cheshire, try if you cannot learn there a little geology.
Walk beyond the town. You find the shore protected for a long way by a sea-wall, lest it should be eaten away by the waves. What the force of those waves can be, even on that sheltered coast, you may judge—at least you could have judged this time last year—by the masses of masonry torn from their iron clampings during the gale of three winters since. Look steadily at those rolled blocks, those twisted stanchions, if they are there still; and then ask yourselves—it will be fair reasoning from the known to the unknown—What effect must such wave-power as that have had beating and breaking for thousands of years along the western coasts of England, Scotland, Ireland? It must have eaten up thousands of acres—whole shires, may be, ere now. Its teeth are strong enough, and it knows neither rest nor pity, the cruel hungry sea. Give it but time enough, and what would it not eat up? It would eat up, in the course of ages, all the dry land of this planet, were it not baffled by another counteracting force, of which I shall speak hereafter.
As you go on beyond the sea-wall, you find what it is eating up. The whole low cliff is going visibly. But whither is it going? To form new soil in the æstuary. Now you will not wonder how old harbours so often become silted up. The sea has washed the land into them. But more, the sea-currents do not allow the sands of the æstuary to escape freely out to sea. They pile it up in shifting sand-banks about the mouth of the æstuary. The prevailing sea-winds, from whatever quarter, catch up the sand, and roll it up into sand-hills. Those sand-hills are again eaten down by the sea, and mixed with the mud of the tide-flats, and so is formed a mingled soil, partly of clayey mud, partly of sand; such a soil as stretches over the greater part of all our lowlands.
Now, why should not that soil, whether in England or in Scotland, have been made by the same means as that of every æstuary.
You find over great tracts of East Scotland, Lancashire, Norfolk, etc., pure loose sand just beneath the surface, which looks as if it was blown sand from a beach. Is it not reasonable to suppose that it is? You find rising out of many lowlands, crags which look exactly like old sea-cliffs eaten by the waves, from the base of which the waters have gone back. Why should not those crags be old sea-cliffs? Why should we not, following our rule of explaining the unknown by the known, assume that such they are till someone gives us a sound proof that they are not; and say—These great plains of England and Scotland were probably once covered by a shallow sea, and their soils made as the soil of any tide-flat is being made now?
But you may say, and most reasonably “The tide-flats are just at the sea-level. The whole of the lowland is many feet above the sea; it must therefore have been raised out of the sea, according to your theory: and what proofs have you of that?”
Well, that is a question both grand and deep, on which I shall not enter yet; but meanwhile, to satisfy you that I wish to play fair with you, I ask you to believe nothing but what you can prove for yourselves. Let me ask you this: suppose that you had proof positive that I had fallen into the river in the morning; would not your meeting me in the evening be also proof positive that somehow or other I had in the course of the day got out of the river? I think you will accept that logic as sound.
Now if I can give you proof positive, proof which you can see with your own eyes, and handle with your own hands, and alas! often feel but too keenly with your own feet, that the whole of the lowlands were once beneath the sea; then will it not be certain that, somehow or other, they must have been raised out of the sea again?
And that I propose to do in my next paper, when I speak of the pebbles in the street.
Meanwhile I wish you to face fairly the truly grand idea, which all I have said tends to prove true—that all the soil we see is made by the destruction of older soils, whether soft as clay, or hard as rock; that rain, rivers, and seas are perpetually melting and grinding up old land, to compose new land out of it; and that it must have been doing so, as long as rain, rivers, and seas have existed. “But how did the first land of all get made?” I can only reply: A natural question: but we can only answer that, by working from the known to the unknown. While we are finding out how these later lands were made and unmade, we may stumble on some hints as to how the first primeval continents rose out of the bosom of the sea.
And thus I end this paper. I trust it has not been intolerably dull. But I wanted at starting to show my readers something of the right way of finding out truth on this and perhaps on all subjects; to make some simple appeals to your common sense; and to get you to accept some plain rules founded on common sense, which will be of infinite use to both you and me in my future papers.
I hope, meanwhile, that you will agree with me, that there is plenty of geological matter to be seen and thought over in the neighbourhood of any town.
Be sure, that wherever there is a river, even a drain; and a stone quarry, or even a roadside bank; much more where there is a sea, or a tidal æstuary, there is geology enough to be


