You are here

قراءة كتاب Is Mars habitable? A critical examination of Professor Percival Lowell's book "Mars and its canals," with an alternative explanation

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Is Mars habitable? A critical examination of Professor Percival Lowell's book "Mars and its canals," with an alternative explanation

Is Mars habitable? A critical examination of Professor Percival Lowell's book "Mars and its canals," with an alternative explanation

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 6

omitting the intermediate stage. Even with us a large quantity of snow is removed aerially; and in the rare atmosphere of Mars this cause of waste must be especially effective. Thus the polar reservoirs are despoiled in the act of being opened. Further objections might be taken to Mr. Lowell's irrigation scheme, but enough has been said to show that it is hopelessly unworkable."

It will be seen that the writer of this article accepted the existence of water on Mars, on the testimony of Sir W. Huggins, which, in view of later observations, he has himself acknowledged to be valueless. Dr. Johnstone Stoney's proof of its absence, derived from the molecular theory of gases, had not then been made public.

Description of some of the Canals.

At the end of his volume Mr. Lowell gives a large chart of Mars on Mercator's projection, showing the canals and other features seen during the opposition of 1905. This contains many canals not shown on the map here reproduced (see frontispiece), and some of the differences between the two are very puzzling. Looking at our map, which shows the north-polar snow below, so that the south pole is out of the view at the top of the map, the central feature is the large spot Ascraeeus Lucus, from which ten canals diverge centrally, and four from the sides, forming wide double canals, fourteen in all. There is also a canal named Ulysses, which here passes far to the right of the spot, but in the large chart enters it centrally. Looking at our map we see, going downwards a little to the left, the canal Udon, which runs through a dark area quite to the outer margin. In the dark area, however, there is shown on the chart a spot Aspledon Lucus, where five canals meet, and if this is taken as a terminus the Udon canal is almost exactly 2000 miles long, and another on its right, Lapadon, is the same length, while Ich, running in a slightly curved line to a large spot (Lucus Castorius on the chart) is still longer. The Ulysses canal, which (on the chart) runs straight from the point of the Mare Sirenum to the Astraeeus Lucus is about 2200 miles long. Others however are even longer, and Mr. Lowell says: "With them 2000 miles is common; while many exceed 2500; and the Eumenides-Orcus is 3540 miles from the point where it leaves Lucus Phoeniceus to where it enters the Trivium Charontis." This last canal is barely visible on our map, its commencement being indicated by the word Eumenides.

The Trivium Charontis is situated just beyond the right-hand margin of our map. It is a triangular dark area, the sides about 200 miles long, and it is shown on the chart as being the centre from which radiate thirteen canals. Another centre is Aquae Calidae situated at the point of a dark area running obliquely from 55° to 35° N. latitude, and, as shown on a map of the opposite hemisphere to our map, has nearly twenty canals radiating from it in almost every direction. Here at all events there seems to be no special connection with the polar snow-caps, and the radiating lines seem to have no intelligent purpose whatever, but are such as might result from fractures in a glass globe produced by firing at it with very small shots one at a time. Taking the whole series of them, Mr. Lowell very justly compares them to "a network which triangulates the surface of the planet like a geodetic survey, into polygons of all shapes and sizes."

At the very lowest estimate the total length of the canals observed and mapped by Mr. Lowell must be over a hundred thousand miles, while he assures us that numbers of others have been seen over the whole surface, but so faintly or on such rare occasions as to elude all attempts to fix their position with certainty. But these, being of the same character and evidently forming part of the same system, must also be artificial, and thus we are led to a system of irrigation of almost unimaginable magnitude on a planet which has no mountains, no rivers, and no rain to support it; whose whole water-supply is derived from polar snows, the amount of which is ludicrously inadequate to need any such world-wide system; while the low atmospheric pressure would lead to rapid evaporation, thus greatly diminishing the small amount of moisture that is available. Everyone must, I think, agree with Miss Clerke, that, even admitting the assumption that the polar snows consist of frozen water, the excessively scanty amount of water thus obtained would render any scheme of world-wide distribution of it hopelessly unworkable.

The very remarkable phenomena of the duplication of many of the lines, together with the darkspots—the so-called oases—at their intersections, are doubtless all connected in some unknown way with the constitution and past history of the planet; but, on the theory of the whole being works of art, they certainly do not help to remove any of the difficulties which have been shown to attend the theory that the single lines represent artificial canals of irrigation with a strip of verdure on each side of them produced by their overflow.

Lowell on the Purpose of the Canals.

Before leaving this subject it will be well to quote Mr. Lowell's own words as to the supposed perfectly level surface of Mars, and his interpretation of the origin and purpose of the 'canals':

"A body of planetary size, if unrotating, becomes a sphere, except for solar tidal deformation; if rotating, it takes on a spheroidal form exactly expressive, so far as observation goes, of the so-called centrifugal force at work. Mars presents such a figure, being flattened out to correspond to its axial rotation. Its surface therefore is in fluid equilibrium, or, in other words, a particle of liquid at any point of its surface at the present time would stay where it was devoid of inclination to move elsewhere. Now the water which quickens the verdure of the canals moves from the pole down to the equator as the season advances. This it does then irrespective of gravity. No natural force propels it, and the inference is forthright and inevitable that it is artificially helped to its end. There seems to be no escape from this deduction. Water only flows downhill, and there is no such thing as downhill on a surface already in fluid equilibrium. A few canals might presumably be so situated that their flow could, by inequality of terrane, lie equatorward, but not all….Now it is not in particular but by general consent that the canal-system of Mars develops from pole to equator. From the respective times at which the minima take place, it appears that the canal quickening occupies fifty-two days, as evidenced by the successive vegetal darkenings, to descend from latitude 72° north to latitude 0°, a journey of 2650 miles. This gives for the water a speed of fifty-one miles a day, or 2.1 miles an hour. The rate of progression is remarkably uniform, and this abets the deduction as to assisted transference. But the fact is more unnatural yet. The growth pays no regard to the equator, but proceeds across it as if it did not exist into the planet's other hemisphere. Here is something still more telling than travel to this point. For even if we suppose, for the sake of argument, that natural forces took the water down to the equator, their action must there be certainly reversed, and the equator prove a dead-line, to pass which were impossible" (pp. 374-5).

I think my readers will agree with me that this whole argument is one of the most curious ever put forth seriously by an eminent man of science. Because the polar compression of Mars is about what calculation shows it ought to be in accordance with its rate of rotation, its surface is in a state of 'fluid equilibrium,' and must therefore be absolutely level throughout. But the polar compression of the earth equally agrees with calculation; therefore its surface is also in 'fluid equilibrium'; therefore it also ought to be as perfectly level on land as it is on the ocean surface!

Pages