قراءة كتاب Scientific American Supplement, No. 460, October 25, 1884

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Scientific American Supplement, No. 460, October 25, 1884

Scientific American Supplement, No. 460, October 25, 1884

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 6

deg., and this corresponds closely enough with the angle which practical constructors of screw propellers have found to give the best results. Until, therefore, we can deal with currents after they have been discharged from the blades of a propeller, it seems unlikely that anything can be done by alterations in the pitch of a propeller. So far as concerns theory, the older turbines were restricted to such imperfect results of impact and reaction as might be obtained by turning a stream at right angles to its original course; and the more scientific of modern turbine constructors may fairly claim credit for an innovation by which practice gave better results than theory seemed to warrant; and the consideration of this aspect of the question will form the concluding subject of the present paper. Referring again to Fig. 3, when a current passes round such a curve as the quadrant of a circle, its horizontal reaction appears as a pressure along c B, which is the result of the natural integration of all the horizontal components of pressures, all of which act perpendicularly to each element of the concave surface along which the current flows. If, now, we add another quadrant of a circle to the curve, and so turn the stream through two right angles, or 180 deg., as shown by Fig. 4, then such a complete reversal of the original direction represents the carrying of it back again to the highest point; it means the entire destruction of its velocity, and it gives the maximum pressure obtainable from a jet of water impinging upon a surface of any form whatsoever. The reaction noticed in Fig. 3 as acting along c B is now confronted by an impact of the now horizontal stream as it is turned round the second 90 deg. of curvature, and reacts also vertically downward. It would almost seem as if the first reaction from B to F should be exactly neutralized by the second impact from F to D. But such is not the case, as experiment shows an excess of the second impact over the first reaction amounting to six units, and shows also that the behavior of the stream through its second quadrant is precisely similar in kind to the first, only less in degree. Also the impact takes place vertically in one case and horizontally in the other. The total downward pressure given by the stream when turned 180 deg. is found by experiment thus: Total impact and reaction from 180 deg. change in direction of current = 132 units; and by deducting the impact 71 units, as previously measured, the new reaction corresponds with an increase of 61 units above the first impact. It also shows an increase of 37.75 units above the greatest resultant obtained by the same stream turned through 90 deg. only. Therefore, in designing a screw propeller or turbine, it would seem from these experiments desirable to aim at changing the direction of the stream, so far as possible, into one at 180 deg. to its original course, and it is by carrying out this view, so far as the necessities of construction will permit, that the scientifically designed modern turbine has attained to that prominence which it holds at present over all hydraulic motors. Much more might be written to extend and amplify the conclusions that can be drawn from the experiments described in the present paper, and from many others made by the writer, but the exigencies of time and your patience alike preclude further consideration of this interesting and important subject.

[1]

Pages