قراءة كتاب The Story of a Piece of Coal: What It Is, Whence It Comes, and Whither It Goes

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
The Story of a Piece of Coal: What It Is, Whence It Comes, and Whither It Goes

The Story of a Piece of Coal: What It Is, Whence It Comes, and Whither It Goes

تقييمك:
0
No votes yet
دار النشر: Project Gutenberg
الصفحة رقم: 4

familiar with some of the living Lycopodiums, those delicate little fern-like mosses which are to be found in many a home. They are but lowly members of our British flora, and it may seem somewhat astounding at first sight that their remote ancestors occupied so important a position in the forests of the ancient period of which we are speaking. Some two hundred living species are known, most of them being confined to tropical climates. They are as a rule, low creeping plants, although some few stand erect. There is room for astonishment when we consider the fact that the fossil representatives of the family, known as Lepidodendra, attained a height of no less than fifty feet, and, there is good ground for believing, in many cases, a far greater magnitude. They consist of long straight stems, or trunks which branch considerably near the top. These stems are covered with scars or scales, which have been caused by the separation of the petioles or leaf-stalks, and this gives rise to the name which the genus bears. The scars are arranged in a spiral manner the whole of the way up the stem, and the stems often remain perfectly upright in the coal-mines, and reach into the strata which have accumulated above the coal-seam.

[Illustration: FIG. 11.—Cast of lepidodendron in sandstone.]

Count Sternberg remarked that we are unacquainted with any existing species of plant, which like the Lepidodendron, preserves at all ages, and throughout the whole extent of the trunk, the scars formed by the attachment of the petioles, or leaf-stalks, or the markings of the leaves themselves. The yucca, dracaena, and palm, entirely shed their scales when they are dried up, and there only remain circles, or rings, arranged round the trunk in different directions. The flabelliform palms preserve their scales at the inferior extremity of the trunk only, but lose them as they increase in age; and the stem is entirely bare, from the middle to the superior extremity. In the ancient Lepidodendron, on the other hand, the more ancient the scale of the leaf-stalk, the more apparent it still remains. Portions of stems have been discovered which contain leaf-scars far larger than those referred to above, and we deduce from these fragments the fact that those individuals which have been found whole, are not by any means the largest of those which went to form so large a proportion of the ancient coal-forests. The lepidodendra bore linear one-nerved leaves, and the stems always branched dichotomously and possessed a central pith. Specimens variously named knorria, lepidophloios, halonia, and ulodendron are all referable to this family.

[Illustration: FIG. 12.—Lepidodendron longifolium. Coal-shale.]

[Illustration: FIG. 13.—Lepidodendron aculeatum in sandstone.]

In some strata, as for instance that of the Shropshire coalfield, quantities of elongated cylindrical bodies known as lepidostrobi have been found, which, it was early conjectured, were the fruit of the giant club-mosses about which we have just been speaking. Their appearance can be called to mind by imagining the cylindrical fruit of the maize or Indian corn to be reduced to some three or four inches in length. The sporangia or cases which contained the microscopic spores or seeds were arranged around a central axis in a somewhat similar manner to that in which maize is found. These bodies have since been found actually situated at the end of branches of lepidodendron, thus placing their true nature beyond a doubt. The fossil seeds (spores) do not appear to have exceeded in volume those of recent club-mosses, and this although the actual trees themselves grew to a size very many times greater than the living species. This minuteness of the seed-germs goes to explain the reason why, as Sir Charles Lyell remarked, the same species of lepidodendra are so widely distributed in the coal measures of Europe and America, their spores being capable of an easy transportation by the wind.

[Illustration: FIG. 14.—Lepidostrobus. Coal-shale.]

One striking feature in connection with the fruit of the lepidodendron and other ancient representatives of the club-moss tribe, is that the bituminous coals in many, if not in most, instances, are made up almost entirely of their spores and spore-cases. Under a microscope, a piece of such coal is seen to be thronged with the minute rounded bodies of the spores interlacing one another and forming almost the whole mass, whilst larger than these, and often indeed enclosing them, are flattened bag-like bodies which are none other than the compressed sporangia which contained the former.

[Illustration: FIG. 15.—Lycopodites. Coal sandstone.]

Now, the little Scottish or Alpine club-moss which is so familiar, produces its own little cones, each with its series of outside scales or leaves; these are attached to the bags or spore-cases, which are crowded with spores. Although in miniature, yet it produces its fruit in just the same way, at the terminations of its little branches, and the spores, the actual germs of life, when examined microscopically, are scarcely distinguishable from those which are contained in certain bituminous coals. And, although ancient club-mosses have been found in a fossilised condition at least forty-nine feet high, the spores are no larger than those of our miniature club-mosses of the present day.

The spores are more or less composed of pure bitumen, and the bituminous nature of the coal depends largely on the presence or absence of these microscopic bodies in it. The spores of the living club-mosses contain so much resinous matter that they are now largely used in the making of fireworks, and upon the presence of this altered resinous matter in coal depends its capability of providing a good blazing coal.

At first sight it seems almost impossible that such a minute cause should result in the formation of huge masses of coal, such an inconceivable number of spores being necessary to make even the smallest fragment of coal. But if we look at the cloud of spores that can be shaken from a single spike of a club-moss, then imagine this to be repeated a thousand times from each branch of a fairly tall tree, and then finally picture a whole forest of such trees shedding in due season their copious showers of spores to earth, we shall perhaps be less amazed than we were at first thought, at the stupendous result wrought out by so minute an object.

Another well-known form of carboniferous vegetation is that known as the Sigillaria, and, connected with this form is one, which was long familiar under the name of Stigmaria, but which has since been satisfactorily proved to have formed the branching root of the sigillaria. The older geologists were in the habit of placing these plants among the tree-ferns, principally on account of the cicatrices which were left at the junctions of the leaf-stalks with the stem, after the former had fallen off. No foliage had, however, been met with which was actually attached to the plants, and hence, when it was discovered that some of them had long attenuated leaves not at all like those possessed by ferns, geologists were compelled to abandon this classification of them, and even now no satisfactory reference to existing orders of them has been made, owing to their anomalous structure. The stems are fluted from base to stem, although this is not so apparent near the base, whilst the raised prominences which now form the cicatrices, are arranged at regular distances within the vertical grooves.

When they have remained standing for some length of time, and the strata have been allowed quietly to accumulate around the trunks, they have escaped compression. They were evidently, to a great extent, hollow like a reed, so that in those trees which still remain

Pages