You are here

قراءة كتاب The New Physics and Its Evolution

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
The New Physics and Its Evolution

The New Physics and Its Evolution

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 1

The Project Gutenberg eBook, The New Physics and Its Evolution, by Lucien Poincare

Title: The New Physics and Its Evolution

Author: Lucien Poincare

Release Date: February 28, 2005 [eBook #15207]

Language: En

Character set encoding: ISO-8859-1

***START OF THE PROJECT GUTENBERG EBOOK THE NEW PHYSICS AND ITS EVOLUTION***

 

E-text prepared by Jeff Spirko, Juliet Sutherland, Jim Land,
and the Project Gutenberg Online Distributed Proofreading Team

 


 

The International Scientific Series

THE NEW PHYSICS

AND ITS EVOLUTION

BY

LUCIEN POINCARÉ

Inspéctéur-General de l'Instruction Publique

Being the Authorized Translation of
"LA PHYSIQUE MODERNE, SON ÉVOLUTION"

NEW YORK
D. APPLETON AND COMPANY
1909


Prefatory Note

M. Lucien Poincaré is one of the distinguished family of mathematicians which has during the last few years given a Minister of Finance to the Republic and a President to the Académie des Sciences. He is also one of the nineteen Inspectors-General of Public Instruction who are charged with the duty of visiting the different universities and lycées in France and of reporting upon the state of the studies there pursued. Hence he is in an excellent position to appreciate at its proper value the extraordinary change which has lately revolutionized physical science, while his official position has kept him aloof from the controversies aroused by the discovery of radium and by recent speculations on the constitution of matter.

M. Poincaré's object and method in writing the book are sufficiently explained in the preface which follows; but it may be remarked that the best of methods has its defects, and the excessive condensation which has alone made it possible to include the last decade's discoveries in physical science within a compass of some 300 pages has, perhaps, made the facts here noted assimilable with difficulty by the untrained reader. To remedy this as far as possible, I have prefixed to the present translation a table of contents so extended as to form a fairly complete digest of the book, while full indexes of authors and subjects have also been added. The few notes necessary either for better elucidation of the terms employed, or for giving account of discoveries made while these pages were passing through the press, may be distinguished from the author's own by the signature "ED."

THE EDITOR.

ROYAL INSTITUTION OF GREAT BRITAIN, April 1907.


Author's Preface

During the last ten years so many works have accumulated in the domain of Physics, and so many new theories have been propounded, that those who follow with interest the progress of science, and even some professed scholars, absorbed as they are in their own special studies, find themselves at sea in a confusion more apparent than real.

It has therefore occurred to me that it might be useful to write a book which, while avoiding too great insistence on purely technical details, should try to make known the general results at which physicists have lately arrived, and to indicate the direction and import which should be ascribed to those speculations on the constitution of matter, and the discussions on the nature of first principles, to which it has become, so to speak, the fashion of the present day to devote oneself.

I have endeavoured throughout to rely only on the experiments in which we can place the most confidence, and, above all, to show how the ideas prevailing at the present day have been formed, by tracing their evolution, and rapidly examining the successive transformations which have brought them to their present condition.

In order to understand the text, the reader will have no need to consult any treatise on physics, for I have throughout given the necessary definitions and set forth the fundamental facts. Moreover, while strictly employing exact expressions, I have avoided the use of mathematical language. Algebra is an admirable tongue, but there are many occasions where it can only be used with much discretion.

Nothing would be easier than to point out many great omissions from this little volume; but some, at all events, are not involuntary.

Certain questions which are still too confused have been put on one side, as have a few others which form an important collection for a special study to be possibly made later. Thus, as regards electrical phenomena, the relations between electricity and optics, as also the theories of ionization, the electronic hypothesis, etc., have been treated at some length; but it has not been thought necessary to dilate upon the modes of production and utilization of the current, upon the phenomena of magnetism, or upon all the applications which belong to the domain of Electrotechnics.

L. POINCARÉ.


Contents

EDITOR'S PREFATORY NOTE

AUTHOR'S PREFACE

TABLE OF CONTENTS

CHAPTER I

THE EVOLUTION OF PHYSICS

Revolutionary change in modern Physics only apparent: evolution not revolution the rule in Physical Theory— Revival of metaphysical speculation and influence of Descartes: all phenomena reduced to matter and movement— Modern physicists challenge this: physical, unlike mechanical, phenomena seldom reversible—Two schools, one considering experimental laws imperative, the other merely studying relations of magnitudes: both teach something of truth—Third or eclectic school— Is mechanics a branch of electrical science?

CHAPTER II

MEASUREMENTS

§ 1. Metrology: Lord Kelvin's view of its necessity— Its definition § 2. The Measure of Length: Necessity for unit— Absolute length—History of Standard—Description of Standard Metre—Unit of wave-lengths preferable—The International Metre § 3. The Measure of Mass: Distinction between mass and weight—Objections to legal kilogramme and its precision—Possible improvement § 4. The Measure of Time: Unit of time the second—Alternative units proposed—Improvements in chronometry and invar § 5. The Measure of Temperature: Fundamental and derived units—Ordinary unit of temperature purely arbitrary—Absolute unit mass of H at pressure of 1 m. of Hg at 0° C.—Divergence of thermometric and thermodynamic scales—Helium thermometer for low, thermo-electric couple for high, temperatures—Lummer and Pringsheim's improvements in thermometry. § 6. Derived Units and Measure of Energy: Importance of erg as unit—Calorimeter usual means of determination—Photometric units. § 7. Measure of Physical Constants: Constant of gravitation—Discoveries of Cavendish, Vernon Boys, Eötvös, Richarz and Krigar-Menzel—Michelson's improvements on Fizeau and Foucault's experiments— Measure of speed of light.

Pages