قراءة كتاب Harvard Psychological Studies, Volume 1 Containing Sixteen Experimental Investigations from the Harvard Psychological Laboratory.
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

Harvard Psychological Studies, Volume 1 Containing Sixteen Experimental Investigations from the Harvard Psychological Laboratory.
phenomenon is striking, since, if the eye moves in the same direction as the train, it is certain that the images on the retina succeed one another even more rapidly than when the eye is at rest. A supposition which occurs to one at once as a possible explanation is that perchance during eye-movement the retinal stimulations do not affect consciousness.
On the other hand, if one fixates a fly which happens to be crawling across the window-pane and follows its movements continuously, the objects outside swim past as confusedly as ever, and the image of the fly remains always distinct. Here the eye is moving, and it may be rapidly, yet both the fly and the blurred landscape testify to a thorough awareness of the retinal stimulations. There seems to be no anæsthesia here. It may be, however, that the eye-movement which follows a moving object is different from that which strikes out independently across the visual field; and while in the former case there is no anæsthesia, perhaps in the latter case there is anæsthesia.
Cattell,1 in considering a similar experience, gives his opinion that not the absence of fusion for the moving eye, but its presence for the resting eye, needs explanation. "More than a thousand interruptions per second," he believes, "give a series of sharply defined retinal processes." But as for the fusion of moving objects seen when the eyes are at rest, Cattell says, "It is not necessary and would probably be disadvantageous for us to see the separate phases." Even where distinct vision would be 'disadvantageous' he half doubts if fusion comes to the rescue, or if even the color-wheel ever produces complete fusion. "I have never been able," he writes, "to make gray in a color-wheel from red and green (with the necessary correction of blue), but when it is as nearly gray as it can be got I see both red and green with an appearance of translucence."
That the retina can hold apart more than one thousand stimulations per second, that there is, in fact, no such thing as fusion, is a supposition which is in such striking contrast to all previous explanations of optical phenomena, that it should be accepted only if no other theory can do justice to them. It is hoped that the following pages will show that the facts do not demand such a theory.
Another simple observation is interesting in this connection. If at any time, except when the eyes are quite fresh, one closes one's eyes and attends to the after-images, some will be found which are so faint as to be just barely distinguishable from the idioretinal light. If the attention is then fixed on one such after-image, and the eyes are moved, the image will suddenly disappear and slowly emerge again after the eyes have come to rest. This disappearance during eye-movements can be observed also on after-images of considerable intensity; these, however, flash back instantly into view, so that the observation is somewhat more difficult. Exner,2 in speaking of this phenomenon, adds that in general "subjective visual phenomena whose origin lies in the retina, as for instance after-images, Purkinje's vessel-figure, or the phenomena of circulation under discussion, are almost exclusively to be seen when the eye is rigidly fixed on a certain spot: as soon as a movement of the eye is made, the subjective phenomena disappear."
The facts here mentioned in no wise contradict a phenomenon recently discussed by McDougall,3 wherein eye-movements revive sensations which had already faded. Thus an eye-movement will bring back an after-image which was no longer visible. This return to vividness takes place after the movement has been completed, and there is no contention that the image is seen just during the movement.
The disappearance of after-images during eye-movements is mentioned by Fick and Gürber,4 who seek to explain the phenomenon by ascribing it to a momentary period of recovery which the retina perhaps undergoes, and which would for the moment prevent further stimulations from being transmitted to the optic nerve. Exner observes that this explanation would not, however, apply to the disappearance of the vessel-figure, the circulation phenomenon, the foveal figure, the polarization-sheaf of Haidinger, Maxwell's spot, or the ring of Löwe; for these phenomena disappear in a similar manner during movement. Exner offers another and a highly suggestive explanation. He says of the phenomenon (op. citat., S. 47), "This is obviously related to the following fact, that objective and subjective impressions are not to be distinguished as such, so long as the eye is at rest, but that they are immediately distinguished if an eye-movement is executed; for then the subjective phenomena move with the eye, whereas the objective phenomena are not displaced.... This neglect of the subjective phenomena is effected, however, not by means of an act of will, but rather by some central mechanism which, perhaps in the manner of a reflex inhibition, withholds the stimulation in question from consciousness, without our assistance and indeed without our knowledge." The suggestion of a central mechanism which brings about a reflex inhibition is the significant point.
It is furthermore worth noting that movements of the eyelid and changes in the accommodation also cause the after-images to disappear (Fick and Gürber), whereas artificial displacement of the eye, as by means of pressure from the finger, does not interfere with the images (Exner).
Another motive for suspecting anæsthesia during eye-movement is found by Dodge,5 in the fact that, "One may watch one's eyes as closely as possible, even with the aid of a concave reflector, whether one looks from one eye to the other, or from some more distant object to one's own eyes, the eyes may be seen now in one position and now in another, but never in motion." This phenomenon was described by Graefe,6 who believed it was to be explained in the same way as the illusion which one experiences in a railway coach when another train is moving parallel with the coach in which one sits, in the same direction and at the same speed. The second train, of course, appears motionless.
This explanation of Graefe is not to be admitted, however, since in the case of eye-movement there are muscular sensations of one's own activity, which are not present when one merely sits in a coach. These sensations of eye-movement are in all cases so intimately connected with our perception of the movement of objects, that they may not be in this case simply neglected. The case of the eye trying to watch its own movement in a mirror is more nearly comparable with the case in which the eye follows the movement of some independent object, as a race-horse or a shooting-star. In both cases the image