You are here

قراءة كتاب The Water Supply of the El Paso and Southwestern Railway from Carrizozo to Santa Rosa, N. Mex. American Society of Civil Engineers: Transactions, No. 1170

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
The Water Supply of the El Paso and Southwestern Railway from Carrizozo to Santa Rosa, N. Mex.
American Society of Civil Engineers: Transactions, No. 1170

The Water Supply of the El Paso and Southwestern Railway from Carrizozo to Santa Rosa, N. Mex. American Society of Civil Engineers: Transactions, No. 1170

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 4

are used, as stated. Also at two points, where a steep grade ends near the ground surface and is followed by a flatter grade, stand-pipes are erected.

These stand-pipes are of 6-in. iron pipe standing in a special casting in the pipe line and enclosed in a concrete base. They are, of course, open at the top, and vary in height from 15 to 60 ft., depending on the elevation of the hydraulic grade. They have given some checks on the position of this grade during the velocity measurements hereinafter described. Their locations are shown on the profile, Plate V.

Nogal Reservoir.—Nogal Reservoir is the storage unit of the system, and is on the north edge of a table-land, 1,700 ft. above the railway, on the Carrizozo plain, 15 miles away. It is 11-1/2 miles from the head of the pipe on Bonito Creek.

This reservoir is a natural basin or bowl, 1/2 mile in diameter across the top, 1/4 mile on the bottom, and 36 ft. deep. A level line, 1500 ft. long, drawn from its bottom, comes out to grade on the north declivity of the table-land. On this level line an open cut was made and the outlet pipe laid. The cut was then closed by a dam.

The supply pipe from Bonito Creek delivers water into the basin over the top of its southern rim, the water, as it leaves the pipe, flowing over a standard weir, without end contractions, into a stone gutter. A by-pass pipe, with suitable valves, passes around the western side of the basin and connects to the outlet pipe.

This comparatively small amount of work equipped a very good natural reservoir with a capacity of 422,000,000 gal., which can be increased to 1,000,000,000 gal. by embankments across low places in the rim.

Service Reservoirs.—At Coyote, an artificial service reservoir, 100 by 200 ft. on the bottom, with slopes of 1-1/2 on 1 and a total depth of 15 ft., serves as an equalizer of the flow to and away from the pumps at that point. The pump-house is built alongside this reservoir. The delivery pipe from the Nogal Reservoir runs directly to the pumps, but has a tee-branch, 50 ft. long, into the Coyote Reservoir. This branch passes through a valve chamber between the pump-house and the reservoir. In this chamber there are controlling valves and an automatic overflow. This overflow is provided against the contingency of a full reservoir and idle pumps. If the pipe line is delivering water faster than the pumps discharge it, the surplus goes into the reservoir. This arrangement is self-acting and controlling. There is a similar arrangement at the Luna pumping plant, also at the Carrizozo service reservoir, and at the regulating reservoir on the Corona summit.

Each of the four service reservoirs is of the same size, and lined with 4 in. of 1:2:4 concrete. At Luna and Corona the concrete is reinforced with 3/8-in. round rods spaced 12 in. from center to center, both ways. This reinforcement should have been used in all the work.

Pumping Plants.—The pumps at Coyote and Luna are Nordberg duplex, cross-compound, condensing, crank-and-fly-wheel machines, with 6-in. plungers, traveling 600 ft. per min. at full normal speed, and designed to work against 300 lb. per sq. in. They have a guaranteed efficiency of 135,000,000 ft-lb. per 1,000 lb. of steam at 150 lb. and superheated 75 degrees.

The boilers are 125-h.p., Sterling, water-tube, with Foster superheaters, and 33-in. stacks, 100 ft. high.

Each plant is in complete duplicate pump and boiler units, only one set working at a time.

The pump building is a substantial concrete, brick, and steel structure, 50 by 80 ft. in plan, with a fire-wall, with two steel doors dividing the floor space into an engine-room 50 by 50 ft., and a boiler-room 50 by 30 ft. A concrete coal-bin adjoins the exterior boiler-room door. Coal is delivered directly from the car to the bin.

The plant is lighted by a small, but very complete, engine and dynamo on one base and run by steam from the Sterling boilers.

The two plants are exactly alike throughout.

Reservoir Leakage.—The Nogal Reservoir basin is covered with from 2 to 5 ft. of good clay, except where it is punctured by a dike, or washed down to the underlying sandstone by a few gullies. These punctures or washes were covered or filled with clay from 1 to 4 ft. deep. During the first season the leakage, above the 6-ft. contour, was at the rate of 2 in. per day.

As the water fell, due to leakage, evaporation, and use, a herd of from 300 to 400 cattle were worked around the shore line. This reduced the leakage to 3/8 in. below 8 ft., and to nothing below 6 ft., above the outlet. As the flow line rises higher each season, the puddling will be continued to the top. The leakage at 12 ft. above the outlet, or 17 ft. above the bottom, is still approximately 1 in. per day. The total puddling, to date, covering two seasons, is equivalent to 11,150 days' work of one cow, and covers an area of 1,500,000 sq. ft.

The clay packed densely, the final hoof marks being not more than 1/4 in. deep and remaining distinct under the water around the shore line for one year. Apparently, the reservoir will finally become water-tight at all elevations.

The soil in which the four service reservoirs on the railway are built proved to be about the worst for such work. In its natural state on the prairie, after the excavation for the reservoir was completed, it filtered water at the rate of 3 ft. per day. Tamping and puddling still left a filtration of 12 in. per day, with a tendency to increase. Enough water filtered through the concrete to produce settlement and cracks. Finally, the concrete was water-proofed with two coats of soap, two of alum, and one of asphalt. This has made all the reservoirs water-tight. Elaterite, an asphalt paint made by the Elaterite Paint and Manufacturing Company, of Des Moines, Iowa, was used successfully on the Luna Reservoir. This paint is applied cold, and preliminary tests showed it to be quite efficient.

The analysis of the soil is as follows:

Loss on ignition                 3.35
Silica                          56.36
Oxide of iron                    2.93
Oxide of aluminum                8.97
Calcium oxide                   15.95Magnesium oxide                  0.98
Oxides of sodium and potassium   0.47
Carbonic acid                   11.35
Sulphuric acid                   0.11
Chlorine                         0.04
Manganese                      Traces
                               ------
                               100.51
Insoluble matter, 64.50 per cent.

Pipe-Line Leakage.—There is no measurable leakage from the iron pipe. By thorough inspection and measurement at the end of two years, leakage on the wood pipe, between Coyote and Bonito Creek, from the 11-and 12-in. pipe, was found to be as follows:

On 8.6 miles, 11-in. pipe, 146,600 gal. per day = 17,046 gal. per mile.
" 4     "    12  "    "    14,829  "    "   "  =  3,702  "    "    "

The 7-1/2-in. pipe on this section appears to be leaking less than the 12-in. pipe. Inspection and measurement of it are to be made in a short time.

There is no material leakage from the 10-and 16-in. pipe between Bonito Creek and Nogal Reservoir, as determined by velocity and volumetric measurements hereafter described. The greatest probable error in the velocity measurements would not exceed 1/2 per cent. If such error existed, and was all charged to leakage, it would amount to but 17,204 gal. per day, or 1,582 gal. per mile, out of a daily delivery of 3,784,000 gal.; but the measured discharge of the pipe, as determined by the velocity, was 5.84

Pages