You are here

قراءة كتاب Half-hours with the Telescope Being a Popular Guide to the Use of the Telescope as a Means of Amusement and Instruction.

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Half-hours with the Telescope
Being a Popular Guide to the Use of the Telescope as a Means of Amusement and Instruction.

Half-hours with the Telescope Being a Popular Guide to the Use of the Telescope as a Means of Amusement and Instruction.

تقييمك:
0
No votes yet
دار النشر: Project Gutenberg
الصفحة رقم: 7

tag="{http://www.w3.org/1999/xhtml}a">fig. 8, which represents a telescope of my own construction. The slow movement in altitude is given by rotating the rod he, the endless screw in which turns the small wheel at b, whose axle in turn bears a pinion-wheel working in the teeth of the quadrant a. The slow movement in azimuth is given in like manner by rotating the rod h'e', the lantern-wheel at the end of which turns a crown-wheel on whose axle is a pinion-wheel working in the teeth of the circle c. The casings at e and e', in which the rods he and h'e' respectively work, are so fastened by elastic cords that an upward pressure on the handle h, or a downward pressure on the handle h', at once releases the endless screw or the crown-wheel respectively, so that the telescope can be swept at once through any desired angle in altitude or azimuth. This method of mounting has other advantages; the handles are conveniently situated and constant in position; also, as they do not work directly on the telescope, they can be turned without setting the tube in vibration.

Figure 8
Fig. 8.

I do not recommend the mounting to be exactly as shown in fig. 8. That method is much too expensive for an alt-azimuth. But a simple arrangement of belted wheels in place of the toothed wheels a and c might very readily be prepared by the ingenious amateur telescopist; and I feel certain that the comfort and convenience of the arrangement would amply repay him for the labour it would cost him. My own telescope—though the large toothed-wheel and the quadrant were made inconveniently heavy (through a mistake of the workman who constructed the instrument)—worked as easily and almost as conveniently as an equatorial.

Still, it is well for the observer who wishes systematically to survey the heavens—and who can afford the expense—to obtain a well-mounted equatorial. In this method of mounting, the main axis is directed to the pole of the heavens; the other axis, at right angles to the first, carries the telescope-tube. One of the many methods adopted for mounting equatorials is that exhibited—with the omission of some minor details—in fig. 9. a is the polar axis, b is the axis (called the declination axis) which bears the telescope. The circles c and d serve to indicate, by means of verniers revolving with the axes, the motion of the telescope in right ascension and declination, respectively. The weight w serves to counterpoise the telescope, and the screws s, s, s, s, serve to adjust the instrument so that the polar axis shall be in its proper position. The advantage gained by the equatorial method of mounting is that only one motion is required to follow a star. Owing to the diurnal rotation of the earth, the stars appear to move uniformly in circles parallel to the celestial equator; and it is clear that a star so moving will be kept in the field of view, if the telescope, once directed to the star, be made to revolve uniformly and at a proper rate round the polar axis.

Figure 9
Fig. 9.

The equatorial can be directed by means of the circles c and d to any celestial object whose right ascension and declination are known. On the other hand, to bring an object into the field of view of an alt-azimuth, it is necessary, either that the object itself should be visible to the naked eye, or else that the position of the object should be pretty accurately learned from star-maps, so that it may be picked up by the alt-azimuth after a little searching. A small telescope called a finder is usually attached to all powerful telescopes intended for general observation. The finder has a large field of view, and is adjusted so as to have its axis parallel to that of the large telescope. Thus a star brought to the centre of the large field of the finder (indicated by the intersection of two lines placed at the focus of the eye-glass) is at, or very near, the centre of the small field of the large telescope.

If a telescope has no finder, it will be easy for the student to construct one for himself, and will be a useful exercise in optics. Two convex lenses not very different in size from those shown in fig. 1, and placed as there shown—the distance between them being the sum of the focal lengths of the two glasses—in a small tube of card, wood, or tin, will serve the purpose of a finder for a small telescope. It can be attached by wires to the telescope-tube, and adjusted each night before commencing observation. The adjustment is thus managed:—a low power being applied to the telescope, the tube is turned towards a bright star; this is easily effected with a low power; then the finder is to be fixed, by means of its wires, in such a position that the star shall be in the centre of the field of the finder when also in the centre of the telescope's field. When this has been done, the finder will greatly help the observations of the evening; since with high powers much time would be wasted in bringing an object into the field of view of the telescope without the aid of a finder. Yet more time would be wasted in the case of an object not visible to the naked eye, but whose position with reference to several visible stars is known; since, while it is easy to bring the point required to the centre of the finder's field, in which the guiding stars are visible, it is very difficult to direct the telescope's tube on a point of this sort. A card tube with wire fastenings, such as we have described, may appear a very insignificant contrivance to the regular observer, with his well-mounted equatorial and carefully-adjusted finder. But to the first attempts of the amateur observer it affords no insignificant assistance, as I can aver from my own experience. Without it—a superior finder being wanting—our "half-hours" would soon be wasted away in that most wearisome and annoying of all employments, trying to "pick up" celestial objects.

It behoves me at this point to speak of star-maps. Such maps are of many different kinds. There are the Observatory maps, in which the places of thousands of stars are recorded with an amazing accuracy. Our beginner is not likely to make use of, or to want, such maps as these. Then there are maps merely intended to give a good general idea of the appearance of the heavens at different hours and seasons. Plate I. presents four maps of this sort; but a more complete series of eight maps has been published by

Pages