قراءة كتاب Some Mooted Questions in Reinforced Concrete Design American Society of Civil Engineers, Transactions, Paper No. 1169, Volume LXX, Dec. 1910
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

Some Mooted Questions in Reinforced Concrete Design American Society of Civil Engineers, Transactions, Paper No. 1169, Volume LXX, Dec. 1910
the strength of the column.
A paper, by Mr. M.O. Withey, before the American Society for Testing Materials, in 1909, gave the results of some tests on concrete-steel and plain concrete columns. (The term, concrete-steel, is used because this particular combination is not "reinforced" concrete.) One group of columns, namely, W1 to W3, 10-1/2 in. in diameter, 102 in. long, and circular in shape, stood an average ultimate load of 2,600 lb. per sq. in. These columns were of plain concrete. Another group, namely, E1 to E3, were octagonal in shape, with a short diameter (12 in.), their length being 120 in. These columns contained nine longitudinal rods, 5/8 in. in diameter, and 1/4-in. steel rings every foot. They stood an ultimate load averaging 2,438 lb. per sq. in. This is less than the column with no steel and with practically the same ratio of slenderness.
In some tests on columns made by the Department of Buildings, of Minneapolis, Minn.[D], Test A was a 9 by 9-in. column, 9 ft. 6 in. long, with ten longitudinal, round rods, 1/2 in. in diameter, and 1-1/2-in. by 3/16-in. circular bands (having two 1/2-in. rivets in the splice), spaced 4 in. apart, the circles being 7 in. in diameter. It carried an ultimate load of 130,000 lb., which is much less than half "the compressive resistance of a hooped member," worked out according to the authoritative quotation before given. Another similar column stood a little more than half that "compressive resistance." Five of the seventeen tests on the concrete-steel columns, made at Minneapolis, stood less than the plain concrete columns. So much for the longitudinal rods, and for hoops which are not close enough to stiffen the rods; and yet, in reading the literature on the subject, any one would be led to believe that longitudinal rods and hoops add enormously to the strength of a concrete column.
The sixteenth indictment against common practice is in reference to flat slabs supported on four sides. Grashof's formula for flat plates has no application to reinforced concrete slabs, because it is derived for a material strong in all directions and equally stressed. The strength of concrete in tension is almost nil, at least, it should be so considered. Poisson's ratio, so prominent in Grashof's formula, has no meaning whatever in steel reinforcement for a slab, because each rod must take tension only; and instead of a material equally stressed in all directions, there are generally sets of independent rods in only two directions. In a solution of the problem given by a high English authority, the slab is assumed to have a bending moment of equal intensity along its diagonal. It is quite absurd to assume an intensity of bending clear into the corner of a slab, and on the very support equal to that at its center. A method published by the writer some years ago has not been challenged. By this method strips are taken across the slab and the moment in them is found, considering the limitations of the several strips in deflection imposed by those running at right angles therewith. This method shows (as tests demonstrate) that when the slab is oblong, reinforcement in the long direction rapidly diminishes in usefulness. When the ratio is 1:1-1/2, reinforcement in the long direction is needless, since that in the short direction is required to take its full amount. In this way French and other regulations give false results, and fail to work out.
If the writer is wrong in any or all of the foregoing points, it should be easy to disprove his assertions. It would be better to do this than to ridicule or ignore them, and it would even be better than to issue reports, signed by authorities, which commend the practices herein condemned.
FOOTNOTES:
[A] Presented at the meeting of March 16th, 1910.
[B] "Stresses in Reinforced Concrete Beams," Journal, Am. Soc. Mech. Engrs., Mid-October, 1909.
[C] Page 14, column 8.
[D] Engineering News, December 3d, 1908.
DISCUSSION
Joseph Wright, M. Am. Soc. C. E. (by letter).—If, as is expected, Mr. Godfrey's paper serves to attract attention to the glaring inconsistencies commonly practiced in reinforced concrete designs, and particularly to the careless detailing of such structures, he will have accomplished a valuable purpose, and will deserve the gratitude of the Profession.
No engineer would expect a steel bridge to stand up if the detailing were left to the judgment or convenience of the mechanics of the shop, yet in many reinforced concrete designs but little more thought is given to the connections and continuity of the steel than if it were an unimportant element of the structure. Such examples, as illustrated by the retaining wall in Fig. 2, are common, the reinforcing bars of the counterfort being simply hooked by a 4-in. U-bend around those of the floor and wall slabs, and penetrating the latter only from 8 to 12 in. The writer can cite an example which is still worse—that of a T-wall, 16 ft. high, in which the vertical reinforcement of the wall slab consisted of 3/4-in. bars, spaced 6 in. apart. The wall slab was 8 in. thick at the top and only 10 in. at the bottom, yet the 3/4-in. vertical bars penetrated the floor slab only 8 in., and were simply hooked around its lower horizontal bars by 4-in. U-bends. Amazing as it may appear, this structure was designed by an engineer who is well versed in the theories of reinforced concrete design. These are only two examples from a long list which might be cited to illustrate the carelessness often exhibited by engineers in detailing reinforced concrete structures.
In reinforced concrete work the detailer has often felt the need of some simple and efficient means of attaching one bar to another, but, in its absence, it is inexcusable that he should resort to such makeshifts as are commonly used. A simple U-hook on the end of a bar will develop only a small part of the strength of the bar, and, of course, should not be relied on where the depth of penetration is inadequate; and, because of the necessity of efficient anchorage of the reinforcing bars where one member of a structure unites with another, it is believed that in some instances economy might be subserved by the use of shop shapes and shop connections in steel, instead of the ordinary reinforcing bars. Such cases are comparatively few, however, for the material in common use is readily adapted to the design, in the ordinary engineering structure, and only requires that its limitations be observed, and that the designer be as conscientious and