You are here
قراءة كتاب A Book of Natural History Young Folks' Library Volume XIV.
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
if you should ever see a wheat rick burnt, you will find more or less of this silica, in a glassy condition, in the embers. In the living plant, all these bodies are combined with a large proportion of water, or are dissolved, or suspended in that fluid. The relative quantity of water is much greater in the stem and leaves than in the seed.
Everybody has seen a common fowl. It is an active creature which runs about and sometimes flies. It has a body covered with feathers, provided with two wings and two legs, and ending at one end in a neck terminated by a head with a beak, between the two parts of which the mouth is placed. The hen lays eggs, each of which is inclosed in a hard shell. If you break an egg the contents flow out and are seen to consist of the colorless glairy “white” and the yellow “yolk.” If the white is collected by itself in water and then heated it becomes turbid, forming a white solid, very similar to the vegetable albumin, which is called animal albumin.
If the yolk is beaten up with water, no starch nor cellulose is obtained from it, but there will be plenty of fatty and some saccharine matter, besides substances more or less similar to albumin and gluten.
The feathers of the fowl are chiefly composed of horn; if they are stripped off and the body is boiled for a long time, the water will be found to contain a quantity of gelatin, which sets into a jelly as it cools; and the body will fall to pieces, the bones and the flesh separating from one another. The bones consist almost entirely of a substance which yields gelatin when it is boiled in water, impregnated with a large quantity of salts of lime, just as the wood of the wheat stem is impregnated with silica. The flesh, on the other hand, will contain albumin, and some other substances which are very similar to albumin, termed fibrin and syntonin.
In the living bird, all these bodies are united with a great quantity of water, or dissolved, or suspended in water; and it must be remembered that there are sundry other constituents of the fowl’s body and of the egg, which are left unmentioned, as of no present importance.
The wheat plant contains neither horn, nor gelatin, and the fowl contains neither starch, nor cellulose; but the albumin of the plant is very similar to that of the animal, and the fibrin and syntonin of the animal are bodies closely allied to both albumin and gluten.
That there is a close likeness between all these bodies is obvious from the fact that when any of them is strongly heated, or allowed to putrefy, it gives off the same sort of disagreeable smell; and careful chemical analysis has shown that they are, in fact, all composed of the elements carbon, hydrogen, oxygen, and nitrogen, combined in very nearly the same proportions. Indeed, charcoal, which is impure carbon, might be obtained by strongly heating either a handful of corn, or a piece of fowl’s flesh, in a vessel from which the air is excluded so as to keep the corn or the flesh from burning. And if the vessel were a still, so that the products of this destructive distillation, as it is called, could be condensed and collected, we should find water and ammonia, in some shape or other, in the receiver. Now ammonia is a compound of the elementary bodies, nitrogen and hydrogen; therefore both nitrogen and hydrogen must have been contained in the bodies from which it is derived.
It is certain, then, that very similar nitrogenous compounds form a very large part of the bodies of both the wheat plant and the fowl, and these bodies are called proteids.
It is a very remarkable fact that not only are such substances as albumin, gluten, fibrin, and syntonin, known exclusively as products of animal and vegetable bodies, but that every animal and every plant, at all periods of its existence, contains one or other of them, though, in other respects, the composition of living bodies may vary indefinitely. Thus, some plants contain neither starch nor cellulose, while these substances are found in some animals; while many animals contain no horny matter and no gelatin-yielding substance. So that the matter which appears to be the essential foundation of both the animal and the plant is the proteid united with water; though it is probable that, in all animals and plants, these are associated with more or less fatty and amyloid (or starchy and saccharine) substances, and with very small quantities of certain mineral bodies, of which the most important appear to be phosphorus, iron, lime, and potash.
Thus there is a substance composed of water + proteids + fat + amyloids + mineral matters which is found in all animals and plants; and, when these are alive, this substance is termed protoplasm.
The wheat plant in the field is said to be a living thing; the fowl running about the farmyard is also said to be a living thing. If the plant is plucked up, and if the fowl is knocked on the head, they soon die and become dead things. Both the fowl and the wheat plant, as we have seen, are composed of the same elements as those which enter into the composition of mineral matter, though united into compounds which do not exist in the mineral world. Why, then, do we distinguish this matter when it takes the shape of a wheat plant or a fowl, as living matter?
In the spring a wheat-field is covered with small green plants. These grow taller and taller until they attain many times the size which they had when they first appeared; and they produce the heads of flowers which eventually change into ears of corn.
In so far as this is a process of growth, accompanied by the assumption of a definite form, it might be compared with the growth of a crystal of salt in brine: but, on closer examination, it turns out to be something very different. For the crystal of salt grows by taking to itself the salt contained in the brine, which is added to its exterior; whereas the plant grows by addition to its interior: and there is not a trace of the characteristic compounds of the plant’s body, albumin, gluten, starch, or cellulose, or fat, in the soil, or in the water, or in the air.
Yet the plant creates nothing; and, therefore, the matter of the proteins and amyloids and fats which it contains must be supplied to it, and simply manufactured, or combined in new fashions, in the body of the plant.
It is easy to see, in a general way, what the raw materials are which the plant works up, for the plant get nothing but the materials supplied to it by the atmosphere and by the soil. The atmosphere contains oxygen and nitrogen, a little carbonic acid gas, a minute quantity of ammoniacal salts, and a variable proportion of water. The soil contains clay and sand (silica), lime, iron, potash, phosphorus, sulphur, ammoniacal salts, and other matters which are of no importance. Thus, between them, the soil and the atmosphere contain all the elementary bodies which we find in the plant; but the plant has to separate them and join them together afresh.
Moreover, the new matter, by the addition of which the plant grows, is not applied to its outer surface, but is manufactured in its interior; and the new molecules are diffused among the old ones.
The grain of wheat is a part of the flower of the wheat plant, which, when it becomes ripe, is easily separated. It contains a minute and rudimentary plant; and, when it is sown, this gradually grows, or becomes developed into, the perfect plant, with its stem, roots, leaves, and flowers, which again give rise to similar seeds. No mineral body runs through a regular series of changes of form and size, and then gives off parts of its substance which take the same course. Mineral bodies present no such development, and give off no seeds or germs. They do not reproduce their kind.
The fowl in the farmyard is incessantly pecking