قراءة كتاب Outlines of a Mechanical Theory of Storms Containing the True Law of Lunar Influence

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Outlines of a Mechanical Theory of Storms
Containing the True Law of Lunar Influence

Outlines of a Mechanical Theory of Storms Containing the True Law of Lunar Influence

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 4

from the common lot? Why, in a word, there should be no intrinsic difference in matter, by which the gravitation of similar or dissimilar substances should be affected? But experiment has detected no such differences; a globe of lead and a globe of wood, of equal weight, attract contiguous bodies with equal force. It is evident, therefore, that if there be such differences, human means are not yet refined enough to detect them. Was the issue successful then? Generally speaking, we may say yes. But where there is a discrepancy between theory and observation, however small that may be, it shows there is still something wanting; and a high authority (Professor Bessel) says in relation to this: “But I think that the certainty that the theory based upon this law, perfectly explains all the observations, is not correctly inferred.” We will not here enumerate the cases to which suspicion might be directed, neither will we more than just allude to the fact, that the Theory of Newton requires a vacuum, in order that the planetary motions may be mathematically exact, and permanent in their stability.

A VACUUM REQUIRED BY MODERN SYSTEMS.

Whatever may be the practical belief of the learned, their fundamental principles forbid the avowal of a plenum, although the undulatory theory of light renders a plenum necessary, and is so far virtually recognized by them, and a correction for resistance is applied to the Comet of Encke. Yet there has been no attempt made to reconcile these opposing principles, other than by supposing that the celestial regions are filled with an extremely rare and elastic fluid. That no definite view has been agreed on, is not denied, and Sir John Herschel speculates on the reality of a resisting medium, by suggesting questions that will ultimately have to be considered, as: “What is the law of density of the resisting medium which surrounds the sun? Is it in rest or in motion? If the latter, in what direction does it move?” In these queries he still clings to the idea of Encke, that the resistance is confined to the neighborhood of the sun and planets, like a ponderable fluid. But the most profound analyst the world has ever boasted, speaks less cautiously, (Poisson Rech.) “It is difficult to attribute, as is usually done, the incandescence of aërolites to friction against the molecules of the atmosphere, at an elevation above the earth where the density of the air is almost null. May we not suppose that the electric fluid, in a neutral condition, forms a kind of atmosphere, extending far beyond the mass of our atmosphere, yet subject to terrestrial attraction, yet physically imponderable, and, consequently, following our globe in its motion?” The incandescence of aërolites must, therefore, be owing to friction against the molecules of the electric fluid which forms an atmosphere around the globe. According to this view, some force keeps it there, yet it is not ponderable. As it is of limited extent, this is not the medium whose undulations brings to light the existence of the stars; neither is Encke’s, nor Herschel’s, nor any other resisting medium. Where shall we find the present established principles of science? If we grant the Newtonians a plenum, they still cling to attraction of all matter in some shape. If we confine them to a vacuum, they will virtually deny it. Is not this solemn trifling? How much more noble would it be to exhibit a little more tolerance, seeing that they themselves know not what to believe? We do not offer these remarks as argument, but merely as indications of that course of reasoning by which we conclude that the upholders of the present systems of science are not entitled to any other ground than the pure Newtonian basis of an interplanetary vacuum.

DIFFICULTIES OF THIS VIEW.

This, then, is the state of the case: Matter attracts matter directly as the mass, and inversely as the squares of the distances. This law is derived from the planetary motions; space is, consequently, a void; and, therefore, the power which gives mechanical momentum to matter, is transferred from one end of creation to the other, without any physical medium to convey the impulse. At the present day the doctrines of Descartes are considered absurd; yet here is an absurdity of a far deeper dye, without we resort to the miraculous, which at once obliterates the connection between cause and effect, which it is the peculiar province of physical science to develop. Let us take another view. The present doctrine of light teaches that light is an undulation of an elastic medium necessarily filling all space; and this branch of science probably rests on higher and surer grounds than any other. Every test applied to it by the refinements of modern skill, strengthens its claims. Here then the Newtonian vacuum is no longer a void. If we get over this difficulty, by attributing to this medium a degree of tenuity almost spiritual, we shall run upon Scylla while endeavoring to shun Charybdis. Light and heat come bound together from the sun, by the same path, and with the same velocity. Heat is therefore due also to an excitement of this attenuated medium. Yet this heat puts our atmosphere in motion, impels onward the waves of the sea, wafts our ships to distant climes, grinds our corn, and in various ways does the work of man. If we expose a mass of metal to the sun’s rays for a single hour the temperature will be raised. To do the same by an artificial fire, would consume fuel, and this fuel would generate the strength or force of a horse. Estimate, therefore, the amount of force received from the sun in a single day for the whole globe, and we shall find that nothing but a material medium will suffice to convey this force.

Let us appeal to analogy. The undulations of our atmosphere produce sound; that is, convey to the ear a part of a mechanical force imparted to a solid body—a bell for instance. Let us suppose this force to equal one pound. On account of the elasticity of the bell, the whole of the force is not instantaneously imparted to the surrounding air; but the denser the air the sooner it loses its motion. In a dense fluid like water, the motion is imparted quickly, and the sound is not a ring but a click. If we diminish the density of the air, the loss of motion is retarded; so that we might conceive it possible, provided the bell could be suspended in a perfect vacuum, without a mechanical tie, and there was no friction to overcome from the rigidity of its particles, that the bell would vibrate forever, although its sound could never reach the ear. We see, therefore, that the mechanical effect in a given time, is owing to the density of the medium. But can we resort to such an analogy? Every discovery in the science confirms more and more the analogy between the motions of air and the medium of space; the angle of reflexion and incidence follows the same law in both; the law of radiation and interference; and if experiments were instituted, there can be but little doubt that sound has also got its spectrum.

ETHER IMPONDERABLE.

The medium of space, therefore, is capable of conveying a mechanical force from one body to another; it therefore possesses inertia. Does it also possess gravity? If we forsake not the principles of science, it is but right that we expect science shall abide by her own principles. Condensation in every elastic medium is as the compressing power, according to all experiments. In the case of our atmosphere under the law of gravitation, the density of air, (supposing it to be infinitely expansible,) at a height only of ten semidiameters of the earth above its surface, would have only a density equal

Pages