You are here
قراءة كتاب Bronchoscopy and Esophagoscopy A Manual of Peroral Endoscopy and Laryngeal Surgery
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

Bronchoscopy and Esophagoscopy A Manual of Peroral Endoscopy and Laryngeal Surgery
to the handle.
[FIG. 18.—The author's forward grasping tube forceps. The handle mechanism is so simple and delicate that the most exquisite delicacy of touch is possible. Two locknuts and a thumbscrew take up all lost motion yet afford perfect adjustability and easy separation for cleansing. At A is shown a small clip for keeping the jaws together to prevent injurious bending in the sterilizer, or carrying case. At the left is shown a handle-clamp for locking the forceps on a foreign body in the solution of certain rarely encountered mechanical problems. The jaws are serrated and cupped.]
[FIG. 19.—Jaws of the author's side-curved endoscopic forceps. These work as shown in the preceding illustration, each forceps having its own handle and tube. Originally the end of the cannula and stylet were squared to prevent rotation of the jaws in the cannula. This was found to be unnecessary with properly shaped jaws, which wedge tightly.]
Rotation Forceps.—It is sometimes desired to make traction on an irregularly shaped foreign body, and yet to allow the object to turn into the line of least resistance while traction is being made. This can be accomplished by the use of the rotation forceps (Fig. 20), which have for blades two pointed hooks that meet at their points and do not overlap. Rotation forceps made on the model of the laryngeal grasping forceps, but having opposing points at the end of the blades, are sometimes very useful for the removal of irregular foreign bodies in the larynx, or when used through the esophageal speculum they are of great service in the extraction of such objects as bones, pin-buttons, and tooth-plates, from the upper esophagus. These forceps are termed laryngeal rotation forceps (Fig. 31). All the various forms of forceps are made in a very delicate size often called the "mosquito" or "extra light" forceps, 40 cm. in length, for use in the 4 mm. and the 5 mm. bronchoscopes. For the 5 mm. bronchoscopes heavier forceps of the 40 cm. length are made. For the larger tubes the forceps are made in 45 cm., 50 cm., and 60 cm. lengths. A square-cannula forceps to prevent turning of the jaws was at one time used by the author but it has since been found that round cannula pattern serves all purposes.
[FIG. 20.—The author's rotation forceps. Useful to allow turning of an irregular foreign body to a safer relation for withdrawal and for the esophagoscopic removal of safety pins by the method of pushing them into the stomach, turning and withdrawal, spring up.]
Upper-lobe-bronchus Forceps.—Foreign bodies rarely lodge in an upper-lobe bronchus, yet with such a problem it is necessary to have forceps that will reach around a corner. The upper-lobe-bronchus forceps shown in Fig. 27 have curved jaws so made as to straighten out while passing through the bronchoscope and to spring back into their original shape on up from the lower jaw emerging from the distal end of the bronchoscopic tube, the radius of curvature being regulated by the extent of emergence permitted. They are made in extra-light pattern, 40 cm. long, and the regular model 45 cm. long. The full-curved model, giving 180 degrees and reaching up into the ascending branches, is made in both light and heavy patterns. Forceps with less curve, and without the spiral, are used when it is desired to reach only a short distance "around the corner" anywhere in the bronchi. These are also useful, as suggested by Willis F. Manges, in dealing with safety pins in the esophagus or tracheobronchial tree.
[FIG. 21.—Tucker jaws for the author's forceps. The tiny lip projecting down from the upper, and up from the lower jaw prevents sidewise escape of the shaft of a pin, tack, nail or needle. The shaft is automatically thrown parallel to the bronchoscopic axis. Drawing about four times actual size.]
[36] Tucker Forceps—Gabriel Tucker modified the regular side-curved forceps by adding a lip (Fig. 21) to the left hand side of both upper and lower jaws. This prevents the shaft of a tack, nail, or pin, from springing out of the grasp of the jaws, and is so efficient that it has brought certainty of grasp never before obtainable. With it the solution of the safety-pin problem devised by the author many years ago has a facility and certainty of execution that makes it the method of choice in safety-pin extraction.
[FIG. 22.—The author's down-jaw esophageal forceps. The dropping jaw is useful for reaching backward below the cricopharyngeal fold when using the esophageal speculum in the removal of foreign bodies. Posterior forceps-spaces are often scanty in cases of foreign bodies lodged just below the cricopharyngeus.]
[FIG. 23.—Expansile forceps for the endoscopic removal of hollow foreign bodies such as intubation tubes, tracheal cannulae, caps, and cartridge shells.]
Screw forceps.—For the secure grasp of screws the jaws devised by Dr. Tucker for tacks and pins are excellent (Fig. 21).
Expanding Forceps.—Hollow objects may require expanding forceps as shown in Fig. 23. In using them it is necessary to be certain that the jaws are inside the hollow body before expanding them and making traction. Otherwise severe, even fatal, trauma may be inflicted.
[FIG. 24.—The author's fenestrated peanut forceps. The delicate construction with long, springy and fenestrated jaws give in gentle hands a maximum security with a minimum of crushing tendency.]
[FIG. 25—The author's bronchial dilators, useful for dilating strictures above foreign bodies. The smaller size, shown at the right is also useful as an expanding forceps for removing intubation tubes, and other hollow objects. The larger size will go over the shaft of a tack.]
[FIG. 26.—The author's self-expanding bronchial dilator. The extent of expansion can be limited by the sense of touch or by an adjustable checking mechanism on the handle. The author frequently used smooth forceps for this purpose, and found them so efficient that this dilator was devised. The edges of forceps jaws are likely to scratch the epithelium. Occasionally the instrument is useful in the esophagus; but it is not very safe, unless used with the utmost caution.]
Tissue Forceps.—With the forceps illustrated in Fig. 28 specimens of tissue may be removed for biopsy from the lower air and food passages with ease and certainty. They have a cross in the outer blade which holds the specimen removed. The action is very delicate, there being no springs, and the sense of touch imparted is often of great aid in the diagnosis.
[FIG. 27.—The author's upper-lobe bronchus forceps. At A is shown the full-curved form, for reaching into the ascending branches of the upper-lobe bronchus A number of different forms of jaws are made in this kind of forceps. Only 2 are shown.]
[FIG 28—The author's endoscopic tissue forceps. The laryngeal length is 30 cm. For esophageal use they are made 50 and 60 cm. long. These are the best forceps for cutting out small specimens of tissue for biopsy.]
The large basket punch forceps shown in Fig. 33 are useful in removing larger growths or specimens of tissue from the pharynx or larynx. A portion or the whole of the epiglottis may be easily and quickly removed with these forceps, the laryngoscope introduced along the dorsum of the tongue into the glossoepiglottic recess, bringing the whole epiglottis into view. The forceps may be introduced through the laryngoscope or alongside the tube. In the latter method a greater lateral action of the forceps is obtainable, the tube being used for vision only. These forceps are 30 cm. long and are made in two sizes; one with the punch of the largest size that can be passed through the adult laryngoscope, and a smaller one for use through the anterior-commissure laryngoscope and