قراءة كتاب Scientific American, Volume XXXVI., No. 8, February 24, 1877 A Weekly Journal of Practical Information, Art, Science, Mechanics, Chemistry, and Manufactures.

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Scientific  American, Volume XXXVI., No. 8, February 24, 1877
A Weekly Journal of Practical Information, Art, Science,
Mechanics, Chemistry, and Manufactures.

Scientific American, Volume XXXVI., No. 8, February 24, 1877 A Weekly Journal of Practical Information, Art, Science, Mechanics, Chemistry, and Manufactures.

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 8

the light was white or colored by being made to pass through a violet-colored glass."

We can proceed further and even show that violet light is in some respects hurtful to plants. Cailletet, for example, says in 1868 that "light which was passed through a solution of iodine in carbonic disulphide prevents decomposition altogether." Baudrimont says that "no colored light permits vegetables to go through all the phases of their evolutions. Violet-colored light is positively injurious to plants; they absolutely require white light." This scientist instituted the most elaborate experiments on the subject, ranging over 11 years, from 1850 to 1861; and the result of all his labor may be summed up in the simple statement that no illumination which human ingenuity can devise is so well adapted for promoting natural processes as the pure white light provided by the Creator. So much by way of general denial of the claims of superior efficacy residing in blue light of any kind.

Now we have yet to examine the peculiar variety of blue light here used. Sunlight can, by means of the prism, be split into colored rays, any one of which we may isolate, and so obtain a certain colored light. Similarly we may obtain light of a desired color by the use of a colored glass which will stop out the rays not of the hue required. So that we may obtain violet light from the spectrum or by filtering sunlight through violet glass. When, however, Dr. Von Bezold, as above, asserts that the violet rays have such and such an effect, he means the violet of the spectrum, which has its specific duty to perform in the compound light of which it is a necessary portion. But the violet light of the spectrum and filtered violet sunlight are altogether different things. The first, as our valued contributor Dr. Van der Weyde has very clearly pointed out, is "a homogeneous color containing, besides the luminous, the invisible chemical rays without any caloric rays; while the light colored by passing through violet glass is a mixture of blue rays with the red rays at the other end of the spectrum; and it contains a quantity of the chemical rays belonging to the blue and the caloric rays belonging to the red. In fact, violet glass passes a light identical with sunlight, only much reduced in power, containing but a portion of its caloric, chemical, and luminous agency: being simply deprived of its strongest rays." And this the spectroscope has clearly demonstrated. Reduced to its simplest terms, then, the necessary conclusion is that the violet glass acts purely as a shade for decreasing the intensity of the solar light. And in the simple fact that it does so serve as a shade lies the sole virtue (if any there be) of the glass. In 1856, Dr. Daubeny made experiments on the germination of seeds, and in his report is this suggestive sentence: "In a south aspect, indeed, light which had passed through the ammonia sulphate of copper (blue solution), and even darkness itself, seemed more favorable than the whole of the spectrum; but this law did not seem to extend to the case of seeds placed in a northern aspect where the total amount of light was less considerable."

In our next issue, we shall review the effects of light and darkness upon the animal organization, and endeavor to account for the curing of diseases and the production of other phenomena which have been erroneously ascribed to the influence of the blue filtered sunlight.


THE WETLI MOUNTAIN RAILROAD AND ITS DISASTROUS TRIAL TRIP.

Among the various means proposed of late years for building lines of railroad on the steep slopes of mountains, that of M. Wetli, of Zurich, Switzerland, has attracted considerable attention from European engineers. We have already laid before our readers the system of central toothed rails used on the Righi and other mountain roads in Europe. In the Wetli system, instead of this rail and the pinion on the vehicle engaging it, there is a drum having a helicoidal thread which engages with triangular rails. This drum is attached to the locomotive. The construction will be readily understood from the illustrations given herewith, which we take from La Nature. The thread on the drum is precisely that which would be formed could a rail similar to one of the central angular rails be wrapped around it; so that it always is in contact with the mid rails, and necessarily prevents any bodily sliding or rolling of the vehicles over the regular track when the drum is held motionless. The V-shaped mid rails are securely fastened to horizontal iron ties, which rest on wooden traverses. The angle of the V is 50°; the distance between any two traverses is 2.8 feet.

Pages