قراءة كتاب The Practical Values of Space Exploration Report of the Committee on Science and Astronautics, U.S. House of Representatives, Eighty-Sixth Congress, Second Session
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
The Practical Values of Space Exploration Report of the Committee on Science and Astronautics, U.S. House of Representatives, Eighty-Sixth Congress, Second Session
title="[Pg 7]"/>
It is undoubtedly wise for the layman, in terms of the benefits he can expect from the space program in the foreseeable future, to steer a reasonable course between the two extremes. Yet one cannot help remembering that the secret of taking practical energy from the atom, a secret which the human race had been trying to learn for thousands of years, was accomplished in less than a decade from the moment when men first determined that it was possible to split an atom. It is difficult to forget that even after World War II some of our most respected scientists sold short the idea of developing long-range missiles. Impractical, they said; visionary. But 6 years after the United States went to work seriously on missiles, an operational ICBM with a 9,000-mile range was an accomplished fact.
THE TIME FOR SPACE
All of the glowing predictions being made on behalf of space exploration will not be here tomorrow or the next day. Yet this seems less important than that we recognize the significance of our moment of history.
We may think of that moment as a new age—the age of space and the atom—to follow the historic ages of stone, bronze, and iron. We may think of it in terms of theories, of succeeding from those of Copernicus to those of Newton and thence to Freud and now Einstein. We may think of our time as the time of exploiting the new fourth state of matter: plasma, or the ion. Or we may think of it in terms of revolutions, as passing from the industrial cycle of steam through the railroad-steel cycle, through the electricity-automobile cycle, into the burgeoning technological revolution of today.
However we think of it, it is a dawning period and one which—in its scope and potential—promises to dwarf much of what has gone before. Those who have given careful thought to the matter are convinced that while some caution is in order, the new era is not one to be approached with timidity, inhibited imagination or too much convention. Neither is there any point in trying to hold off the tempo of this oncoming age or, in any other way, to evade it.
Mark Twain once listened to the complaints of an old riverboat pilot who was having trouble making the switch from sail to steam. The old pilot wanted no part of the newfangled steam contraptions. "Maybe so," replied Twain, "but when it's steamboat time, you steam."[7]
Today is space time and man is going to explore it.
Figure 3.—The versatile Atlas can be used either for launching man into space or to carry a nuclear warhead as far as 9,000 miles.
II. National Security Values
There is no longer doubt that space exploration holds genuine significance for the security and well-being of the United States as a nation.
It does so in at least three ways. One results from the uses which our Armed Forces can make of the knowledge gained from space exploration. A second results from the influence and prestige which America can exert within the world community because of her prowess in space exploration. A third results from the possibility that space exploration, eventually, may prove so immense and important a challenge that it will channel the prime energies of powerful nations toward its own end and thus reduce the current emphasis on developing means of destruction.
The first two values definitely exist. The third seems to be a reasonable hope.
THE MILITARY USES
From the beginning it has been recognized that space exploration, the research connected therewith, and the ability to operate therein is of more than passing interest to the military.
Congress recognized the fact when it passed the National Aeronautics and Space Act of 1958 and directed that "activities peculiar to or primarily associated with the development of weapons systems, military operations, or the defense of the United States * * * shall be the responsibility of, and shall be directed by, the Department of Defense."[8] In the amendments to the Space Act proposed in 1960, this directive was strengthened: "The Department of Defense shall undertake such activities in space, and such research and development connected therewith, as may be necessary for the defense of the United States."[9]
It is possible to argue, and indeed it has been argued, that ballistic missiles such as IRBM's and ICBM's are not really "space" weapons, that they are simply an extension of the traditional art of artillery. For the purposes of this report, however, the argument appears to be largely a semantic one. Such missiles do traverse space, they are guided through space, and they employ the same engines and principles which are presently used for purposes of scientific space exploration. While more advanced "space" weapons may evolve in the future, the missile as we know it today cannot very well be divorced from our thinking about space and its practical uses.
Going on this assumption, and casting an eye in the direction of the Iron Curtain, it is obvious that the Soviet Union is going all-out to exploit space for military purposes.
Military men have known for years that the tremendously powerful booster which the Soviets have been using to launch their massive sputniks was originally designed to carry the primitive heavy version of the A-bomb across continents.
If there was ever doubt of the extent to which the Soviets intend to make space a selected medium for military purposes it was erased when Premier Khrushchev made his address to the Supreme Soviet early in 1960. He commented in part:
Our state has at its disposal powerful rocket equipment. The military air force and navy have lost their previous importance in view of the modern development of military equipment. This type of armament is not being reduced but replaced. Almost the entire military air force is being replaced by rocket equipment. We have by now sharply cut, and it seems will continue sharply to cut and even discontinue the manufacture of bombers and other obsolete equipment. In the navy, the submarine fleet assumes great importance, while surface ships can no longer play the part they once did. In our country the armed forces have been to a considerable extent transferred to rocket and nuclear arms. These arms are being perfected and will continue to be perfected until they are banned.[10]
While it is difficult to assess the actual extent of the Soviet preoccupation with missiles, it has been reported that the Russians are building upward of 100 IRBM and ICBM bases to be manned by about 200,000 men. Most of these, at least the intermediate range bases, are said to be along Russia's Baltic coast, in East Germany, in the southern Ukraine and in the