You are here

قراءة كتاب The Working of Steel Annealing, Heat Treating and Hardening of Carbon and Alloy Steel

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
The Working of Steel
Annealing, Heat Treating and Hardening of Carbon and Alloy Steel

The Working of Steel Annealing, Heat Treating and Hardening of Carbon and Alloy Steel

تقييمك:
0
No votes yet
دار النشر: Project Gutenberg
الصفحة رقم: 6

definite chemical compound of three atoms of iron to one of carbon). Many of the properties of steel, as they vary with carbon content, can be linked up with the increasing amount of this hard carbide cementite, distributed in very fine particles through the softer iron.

Sulphur is another element (symbol S) which is always found in steel in small quantities. Some sulphur is contained in the ore from which the iron is smelted; more sulphur is introduced by the coke and fuel used. Sulphur is very difficult to get rid of in steel making; in fact the resulting metal usually contains a little more than the raw materials used. Only the electric furnace is able to produce the necessary heat and slags required to eliminate sulphur, and as a matter of fact the sulphur does not go until several other impurities have been eliminated. Consequently, an electric steel with extremely low sulphur (0.02 per cent) is by that same token a well-made metal.

Sulphur is of most trouble to rolling and forging operations when conducted at a red heat. It makes steel tender and brittle at that temperature—a condition known to the workmen as "red-short." It seems to have little or no effect upon the physical properties of cold steel—at least as revealed by the ordinary testing machines—consequently many specifications do not set any limit on sulphur, resting on the idea that if sulphur is low enough not to cause trouble to the manufacturer during rolling, it will not cause the user any trouble.

Tool steel and other fine steels should be very low in sulphur, preferably not higher than 0.03 per cent. Higher sulphur steels (0.06 per cent, and even up to 0.10 per cent) have given very good service for machine parts, but in general a high sulphur steel is a suspicious steel. Screw stock is purposely made with up to 0.12 per cent sulphur and a like amount of phosphorus so it will cut freely.

Manganese counteracts the detrimental effect of sulphur when present in the steel to an amount at least five times the sulphur content.

Phosphorus is an element (symbol P) which enters the metal from the ore. It remains in the steel when made by the so-called acid process, but it can be easily eliminated down to 0.06 per cent in the basic process. In fact the discovery of the basic process was necessary before the huge iron deposits of Belgium and the Franco-German border could be used. These ores contain several per cent phosphorus, and made a very brittle steel ("cold short") until basic furnaces were used. Basic furnaces allow the formation of a slag high in lime, which takes practically all the phosphorus out of the metal. Not only is the resulting metal usable, but the slag makes a very excellent fertilizer, and is in good demand.

Silicon is a very widespread element (symbol Si), being an essential constituent of nearly all the rocks of the earth. It is similar to carbon in many of its chemical properties; for instance it burns very readily in oxygen, and consequently native silicon is unknown—it is always found in combination with one or more other elements. When it bums, each atom of silicon unites with two atoms of oxygen to form a compound known to chemists as silica (SiO2), and to the small boy as "sand" and "agate."

Iron ore (an oxide of iron) contains more or less sand and dirt mixed in it when it is mined, and not only the iron oxide but also some of the silicon oxide is robbed of its oxygen by the smelting process. Pig iron—the product of the blast furnace—therefore contains from 1 to 3 per cent of silicon, and some silicon remains in the metal after it has been purified and converted into steel.

However, silicon, as noted above, burns very readily in oxygen, and this property is of good use in steel making. At the end of the steel-making process the metal contains more or less oxygen, which must be removed. This is sometimes done (especially in the so-called acid process) by adding a small amount of silicon to the hot metal just before it leaves the furnace, and stirring it in. It thereupon abstracts oxygen from the metal wherever it finds it, changing to silica (SiO2) which rises and floats on the surface of the cleaned metal. Most of the silicon remaining in the metal is an excess over that which is required to remove the dangerous oxygen, and the final analysis of many steels show enough silicon (from 0.20 to 0.40) to make sure that this step in the manufacture has been properly done.

Manganese is a metal much like iron. Its chemical symbol is Mn. It is somewhat more active than iron in many chemical changes—notably it has what is apparently a stronger attraction for oxygen and sulphur than has iron. Therefore the metal is used (especially in the so-called basic process) to free the molten steel of oxygen, acting in a manner similar to silicon, as explained above. The compound of manganese and oxygen is readily eliminated from the metal. Sufficient excess of elemental manganese should remain so that the purchaser may be sure that the iron has been properly "deoxidized," and to render harmless the traces of sulphur present. No damage is done by the presence of a little manganese in steel, quite the reverse. Consequently it is common to find steels containing from 0.3 to 1.5 per cent.

Alloying Elements.—Commercial steels of even the simplest types are therefore primarily alloys of iron and carbon. Impurities and their "remedies" are always present: sulphur, phosphorus, silicon and manganese—to say nothing of oxygen, nitrogen and carbon oxide gases, about which we know very little. It has been found that other metals, if added to well-made steel, produce definite improvements in certain directions, and these "alloy steels" have found much use in the last ten years. Alloy steels, in addition to the above-mentioned elements, may commonly contain one or more of the following, in varying amounts: Nickel (Ni), Chromium (Cr), Vanadium (Va), Tungsten (W), Molybdenum (Mo). These steels will be discussed at more length in Chapters III and IV.

PROPERTIES OF STEEL

Steels are known by certain tests. Early tests were more or less crude, and depended upon the ability of the workman to judge the "grain" exhibited by a freshly broken piece of steel. The cold-bend test was also very useful—a small bar was bent flat upon itself, and the stretched fibers examined for any sign of break. Harder stiff steels were supported at the ends and the amount of central load they would support before fracture, or the amount of permanent set they would acquire at a given load noted. Files were also used to test the hardness of very hard steel.

These tests are still used to a considerable extent, especially in works where the progress of an operation can be kept under close watch in this way, the product being periodically examined by more precise methods. The chief furnace-man, or "melter," in a steel plant, judges the course of the refining process by casting small test ingots from time to time, breaking them and examining the fracture. Cutlery manufacturers use the bend test to judge the temper of blades. File testing of case-hardened parts is very common.

However there is need of standardized methods which depend less upon the individual skill of the operator, and which will yield results comparable to others made by different men at different places and on different steels. Hence has grown up the art of testing materials.

TENSILE PROPERTIES

Strength of a metal is usually expressed in the number of pounds

Pages