قراءة كتاب Lessons on Soil

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Lessons on Soil

Lessons on Soil

تقييمك:
0
No votes yet
دار النشر: Project Gutenberg
الصفحة رقم: 6

loses its stickiness, but it has not permanently changed because as soon as water is added it comes back to what it was before.

Fig. 2. Columns showing what 100 parts of soil and subsoil were made of

Fig. 2. Columns showing what 100 parts of soil and subsoil were made of


The dried lumps of soil are now to be broken up finely with a piece of wood, but nothing must be lost. It is easy to see shrivelled pieces of plant, but not easy to pick them out; the simplest plan is to burn them away. The soil must be carefully tipped on to a tin lid, or into a crucible, heated over a flame and stirred with a long clean nail. First of all it chars, then there is a little sparkling, but not much, finally the soil turns red and does not change any further no matter how much it is heated. The shade of red will at once be recognised as brick red or terra cotta, indeed "terra cotta" means "baked earth." When the soil is cold it should be examined again; it has become very hard and the plant remains have either disappeared or have changed to ash and crumble away directly they are touched. On weighing a further loss is discovered, which was in our experiment:—

  Weight of top soil after drying but before burning ... 83 decigrams
    "        "   "     "     "     "  after    "     ... 76     "
                                                         --
                    The part that burnt away weighed ...  7     "

   Weight of subsoil after drying but before burning ... 87 decigrams
     "          "      "     "     "  after    "     ... 84     "
                                                         --
                    The part that burnt away weighed ...  3     "


These results are entered on the column in Fig. 2.

The surface soil is seen to contain more material that will burn away than the subsoil does. When the burnt soil is moistened it does not become dark and sticky like it did before, it has completely changed and cannot be made into soil again. It is more like brick dust than soil.

For further experiments we shall want a fresh portion of the original soil.

On a wet afternoon something was noticed that enabled us to get a little further with our studies. The rain water ran down a sloping piece of ground in a tiny channel it had made; the streamlet was very muddy, and at first it was thought that all the soil was washed away. But we soon saw that the channel was lined with grit, some of which was moving slowly down and some not at all. Grit can therefore be separated from the rest of the soil by water.

This separation can be shown very well by the following experiment. Rub ten grains of finely powdered soil with a little water (rain water is better than tap water), and carefully pour the muddy liquid into a large glass jar. Add more water to the rest of the soil, shake, and again pour the liquid into the jar; go on doing this till the jar is full. Then get some more jars and still keep on till the liquid is no longer muddy but nearly clear. The part of the soil that remains behind and will not float over into the jars is at once seen to be made up of small stones, grit, and sand. Set the jars aside and look at them after a day or so. The liquid remains muddy for some time, but then it clears and a thick black sediment gathers at the bottom. If now you very carefully pour the liquid off you can collect the sediments: they are soft and sticky, and can be moulded into patterns like clay. In order to see if they really contain clay we must do the experiment again, but use pure clay from a brick yard, or modelling clay, instead of soil. The muddy liquid is obtained as before, it takes a long time to settle, but in the end it gives a sediment so much like that from the soil, except in colour, that we shall be safe in saying that the sediments in the jars contain the clay from the soil. And thus we have been able to separate the sticky part of the soil—the clay—from the gritty or sandy part which is not at all sticky. We may even be able to find out something more. If we leave the soil sediment and the clay sediment on separate tin lids to dry, and then examine them carefully we may find that the soil sediment is really a little more gritty than the clay. Although it contains the clay it also contains something else.

When the experiment is made very carefully in a proper way this material can be separated from the pure clay. It is called silt, but really there are a number of silts, some almost like clay and some almost like sand; they shade one into the other.

If there is enough grit it should be weighed: we obtained 14 decigrams of grit from 10 grams of our top soil and 17 decigrams from 10 grams of bottom soil. We cannot separate the clay from the silt, but when this is done in careful experiments it is found that the subsoil contains more clay than the top soil. We should of course expect this because we have found that the subsoil is more sticky than the top soil. These results are put into the columns as before so that we can now see at once how much of our soil is water, how much can burn away, how much is grit, and how much is clay and other things.

What would have happened if the sample had been dug out during wetter or drier weather? The quantity of water would have been different, but in other respects the soil would have remained the same. It is therefore best to avoid the changes in the amount of water by working always with 10 grams of dried soil. The results we obtained were:—

Pages