قراءة كتاب Transactions of the American Society of Civil Engineers, vol. LXVIII, Sept. 1910 The Bergen Hill Tunnels. Paper No. 1154

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Transactions of the American Society of Civil Engineers, vol. LXVIII, Sept. 1910
The Bergen Hill Tunnels. Paper No. 1154

Transactions of the American Society of Civil Engineers, vol. LXVIII, Sept. 1910 The Bergen Hill Tunnels. Paper No. 1154

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 2

angles to the line of the contact, a very hard, fine-grained trap, almost black in color, was found, having a specific gravity of 2.98, and weighing 186 lb. per cu. ft. The hardness of this rock is attested by the fact that the average time required to drill a 10-ft. hole in the heading, with

a No. 34 slugger drill, with air at 90 lb. pressure, was almost 10 hours. The specific gravity of this rock is not as high as that of some other specimens of trap tested, which were much more easily drilled. This rock was very blocky, causing the drills to bind and stick badly, and, when being shoveled back from the heading, as it fell it sounded very much as though it were broken glass.

The remainder of the trap varied from this, through several changes of texture and color, due to different amounts of quartz and feldspar, to a very coarse-grained rock, closely resembling granite of a light color, though quite hard. The speed of drilling the normal trap in the heading was approximately 20 to 25 min. per ft., as compared with the 60 min. per ft. noted above, the larger amounts of quartz and feldspar accounting for the greater brittleness and consequently the easier drilling qualities of the rock. The normal trap in these tunnels has a specific gravity varying from 2.85 to 3.04, and weighs from 179 to 190 lb. per cu. ft.

The temperature of the tunnels, at points 1,000 ft. from the portals at both ends, remained nearly stationary, and approximately between 50° in winter and 60° in summer, up to the time the headings were holed through, being practically unaffected by daily changes in the temperature outside. At the western end, after the connection with the Central Shaft headings was made, there was almost always a current of air from the portal to the shaft, and ascending through the latter. This tended to make the temperature in this part of the tunnel correspond more nearly with the outside temperature; in fact, the variation was seldom more than 5° Fahr.

Timbering.—These tunnels have been excavated entirely by the center top heading method, almost invariably used in the United States. Timbering, where required, was of the usual segmental form with outside lagging, as shown in several of the photographs. In a few places it was necessary to hold the ground as the work progressed, and, in such cases, crown bars were used in the headings.

There was some little trouble at the Western Portal, where the top of the rock was very near the roof of the tunnel, as shown by Fig. 1, Plate XXI. A side heading was driven at the level of the springing line until a point was reached where the roof was self-supporting, and the timbering was brought out to the face of the portal from that point.

Skip to text


PLATE XXII.
TRANS. AM. SOC. CIV. ENGRS.
VOL. LXVIII, No. 1154.
LAVIS ON
PENNSYLVANIA R.R. TUNNELS: BERGEN HILL TUNNELS.

see caption

Fig. 1. K 26. P.R.R. Tunnels, N. R. D. Sect. K. (Bergen Hill Tunnels,) Weehawken Shaft. Scaffold car in South Tunnel at Sta. 267+60. Jan. 11, 06.

see caption

Fig. 2. K 31. P.R.R. Tunnels, N. R. Div. Sect. K. (Bergen Hill Tunnels) Weehawken Shaft. Headhouseat ? elevator frame work, looking West. Oct. 17, 06.

see caption

Fig. 3.—Round Holes in Concrete Forms.

see caption

Fig. 4.—Round Holes in Concrete Forms Completed.

Drilling.—Where no timbering was required, several different methods were used in drilling and excavating the solid rock, though in all cases a center top heading was driven. The four diagrams, Figs. 1, 2, 3, and 4, give typical examples of these methods and show, in the order of their numbers, the general tendency of the development from a small heading kept some distance ahead of the bench, to a large heading with the bench kept close to it. The notes on each diagram give the general details of the quantity of drilling and powder used, methods of blasting, etc., and on the progress profile, Fig. 6, is indicated those portions of the tunnels in which each method was used.

All the drills used throughout the work by Mr. Bradley were Rand No. 34 sluggers, with 3⅝-in. cylinders, and the steel was that known as the “Black Diamond Brand,” 1⅜-in., octagon. It was used in 2, 4, 6, 8, 10, and 12-ft. lengths; toward the end of the work it was proposed to use 14-ft. lengths, but owing to some delay in delivery this length was never obtained. The starters, 18 to 24 in. long, were sharpened to 2¾ to 3-in. gauge, which was generally held up to depths of 6 ft.; then the gauge gradually decreased until it was 1¾ to 2¼ in. at the bottom of a 12-ft. hole. Frequently, as many as three or four starters were used in starting a hole, and generally two sharpenings were required for each 2 ft. drilled, after the first 6 ft. It is estimated that about ¼ in. of steel was used for each sharpening, and that there was an average of one sharpening for every foot drilled.

The total quantity of steel used up, lost, or scrapped on the whole work was almost exactly 1 ft. for each 10 cu. yd. excavated, equal to 1¼ in. of steel per yard, distributed approximately as follows:

Sharpening   ¾ to ⅞ in.
Other losses   ½ to ⅜  ”
Total   1¼ in. per cu. yd.

An “Ajax” drill sharpener was used, and proved very satisfactory. Rubber and cotton hose, covered with woven marlin, was used for the bench (3 in. inside diameter, in 50-ft. lengths), for drills (1 in. in diameter, in 25-ft. lengths), and for steam shovels (2½ in. in diameter, in 50-ft. lengths). Hose coverings of wound marlin, and of woven marlin with spiral steel wire covering were tried, but were not satisfactory, owing to the unwinding of the marlin and the bending of the steel covering.

Skip to Text

Figures 1-4 were identically laid out; Figure 1 is representative. In the enlarged views, the plans have been rotated to match the longitudinal section. In the tables, variation between “to” and “-”, and formatting of table entries, is as in the original.

Adv.: Advance
Cu. Yd.: Cubic Yards

Pages