You are here

قراءة كتاب The Dyeing of Cotton Fabrics: A Practical Handbook for the Dyer and Student

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
The Dyeing of Cotton Fabrics: A Practical Handbook for the Dyer and Student

The Dyeing of Cotton Fabrics: A Practical Handbook for the Dyer and Student

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 4

the ultimate fibres of jute are really very short—from 1/10 to 1/8 of an inch in length; those of flax are somewhat longer. Jute, flax, China grass and hemp are common fibres which are derived from the bast of the plants.

There is an important point of difference between seed fibres and bast fibres, that is in the degree of purity. While the seed fibres are fairly free from impurities—cotton rarely containing more than 5 per cent.—the bast fibres contain a large proportion of impurity, from 25 to 30 per cent. as they are first obtained from the plant, and this large quantity has much influence on the extent and character of the treatments to which they are subjected.

As regards the structure of the fibres, it will be sufficient to say that while seed hairs are cylindrical and tubular and have thin walls, bast fibres are more or less polygonal in form and are not essentially tubular, having thick walls and small central canals.

The Cotton Fibre.—The seed hairs of the cotton plant are separated from the seeds by the process of ginning, and they then pass into commerce as raw cotton. In this condition the fibre is found to consist of the actual fibrous substance itself, containing, however, about 8 per cent. of hygroscopic

or natural moisture, and 5 per cent. of impurities of various kinds, which vary in amount and in kind in various descriptions of cotton. In the process of manufacture into cotton cloths, and as the material passes through the operations of bleaching, dyeing or printing, the impurities are eliminated.

Impurities of the Cotton Fibre.—Dr. E. Schunck made an investigation many years ago into the character of the impurities, and found them to consist of the following substances:—

Cotton Wax.—This substance bears a close resemblance to carnauba wax. It is lighter than water, has a waxy lustre, is somewhat translucent, is easily powdered, and melts below the boiling point of water. It is insoluble in water, but dissolves in alcohol and in ether. When boiled with weak caustic soda it melts but is not dissolved by the alkali; it can, however, be dissolved by boiling with alcoholic caustic potash. This wax is found fairly uniformly distributed over the surface of the cotton fibre, and it is due to this fact that raw cotton is wetted by water only with difficulty.

Fatty Acids.—A solid, fatty acid, melting at 55° C. is also present in cotton. Probably stearic acid is the main constituent of this fatty acid.

Colouring Matter.—Two brown colouring matters, both containing nitrogen, can be obtained from raw cotton. One of these is readily soluble in alcohol, the other only sparingly so. The presence in relatively large quantities of these bodies accounts for the brown colour of Egyptian and some other dark-coloured varieties of cotton.

Pectic Acid.—This is the chief impurity found in raw cotton. It can be obtained in the form of an amorphous substance of a light yellow colour, not unlike gum in appearance. It is soluble in boiling water, and the solution has a faint acid reaction. Acids and many metallic

salts, such as mercury, chloride and lead acetate, precipitate pectic acid from its solutions. Alkalies combine with it, and these compounds form brown substances, are but sparingly soluble in water, and many of them can be precipitated out by addition of neutral salts, like sodium and ammonium chlorides.

Albumens.—A small quantity of albuminous matter is found among the impurities of cotton.

Structure of the Cotton Fibre.—The cotton fibre varies in length from 1 to 2 inches, not only in fibres of the same class but also in fibres from different localities—Indian fibres varying from 0.8 in the shortest to 1.4 in the longest stapled varieties; Egyptian cotton fibres range from 1.1 to 1.6 inches long; American cotton ranges from 0.8 in the shortest to 2 inches in the longest fibres. The diameter is about 1/1260 of an inch. When seen under the microscope fully ripe cotton presents the appearance of irregularly twisted ribbons, with thick rounded edges. The thickest part is the root end, or point of attachment to the seed. The free end terminates in a point. The diameter is fairly uniform through ¾ to ⅞ of its length, the rest is taper. In Fig. 1 is given some illustrations of the cotton fibre, showing this twisted and ribbon-like structure, while in Fig. 1A is given some transverse sections of the fibre. These show that it is a collapsed cylinder, the walls being of considerable thickness when compared with the internal bore or canal.

Perfectly developed, well-formed cotton fibres always present this appearance. But all commercial cottons contain more or less of fibres which are not perfectly developed or are unripe. These are known as "dead fibres"; they do not spin well and they do not dye well. On examination under the microscope it is seen that these fibres have not the flattened, twisted appearance of the ripe fibres, but are flatter,

and the central canal is almost obliterated and the fibres are but little twisted. Dead fibres are thin, brittle and weak.

Composition of the Cotton Fibres.—Of all the vegetable textile fibres cotton is found to have the simplest chemical composition and to be, as it were, the type substance of all such fibres, the others differing from it in several respects. When stripped of the comparatively small quantities of impurities, cotton is found to consist of a substance to which the name of cellulose has been given.

FIG. 1.--Cotton Fibre.FIG. 1.—Cotton Fibre.

Cellulose is a compound of the three elements, carbon, hydrogen and oxygen, in the proportions shown in the following analysis:—

Carbon, 44.2 per cent., Hydrogen, 6.3 per cent., Oxygen, 49.5 per cent.,

which corresponds to the empirical formula C6H10O5, which shows it to belong to the group of carbo-hydrates, that is, bodies which contain the hydrogen and oxygen present in them in the proportion in

which they are present in water, namely H2O.

Cellulose may be obtained in a pure condition from cotton by treatment with alkalies, followed by washing, and by treatment with alkaline hypochlorites, acids, washing and, finally, drying. As thus obtained it is a white substance having the form of the fibre from which it is procured, showing a slight lustre, and is slightly translucent. The specific gravity is 1.5, it being heavier than water. It is characterised by being very inert, a property of considerable value from a technical point of view, as enabling the fibres to stand the various operations of bleaching, dyeing, printing, finishing, etc. Nevertheless, by suitable means, cellulose can be made to undergo various chemical decompositions which will be noted in some detail.

Cellulose on exposure to the air will absorb moisture or water. This is known as hygroscopic moisture, or "water of condition". The amount in cotton is about 8 per cent., and it has a very important bearing on the spinning properties of the fibre, as it makes the fibre soft and elastic, while absolutely dry cotton fibre is stiff, brittle and non-elastic; hence it is easier to spin and weave cotton in moist climates or weather than in dry climates or weather. Cotton cellulose is insoluble in all ordinary solvents, such as water, ether, alcohol, chloroform, benzene, etc., and these agents have no influence in any way on the material, but it is soluble in some special solvents that will be noted later on.

ACTION OF

Pages