قراءة كتاب An Analysis of the Lever Escapement

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
An Analysis of the Lever Escapement

An Analysis of the Lever Escapement

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 4

finest Swiss, French and German watches are made with equidistant escapements, while the majority of English and American watches contain the circular. In our opinion the English are wise in adhering to the circular form. We think a ratchet wheel should not be employed with equidistant pallets. By examining Fig. 2, we see an English pallet of this form. We have shown its defects in such a wide pallet as the English (as we have before stated), because they are more readily perceived; also, on account of the shape of the teeth, there is danger of the discharging edge, P, dipping so deep into the wheel, as to make considerable drop necessary, or the pallets would touch on the backs of the teeth. In the case of the club tooth, the latter is hollowed out, therefore, less drop is required. We have noticed that theoretically, it is advantageous to make the pallets narrower than the English, both for the equidistant and circular escapements. There is an escapement, Fig. 4, which is just the opposite to the English. The entire lift is performed by the wheel, while in the case of the ratchet wheel,  the entire lifting angle is on the pallets; also, the pallets being as narrow as they can be made, consistent with strength, it has the good points of both the equidistant and circular pallets, as the unlocking can be performed on the tangent and the lifting arms are of equal length. The wheel, however, is so much heavier as to considerably increase the inertia; also, we have a metal surface of quite an extent sliding over a thin jewel. For practical reasons, therefore, it has been slightly altered in form and is only used in cheap work, being easily made.

An escapement opposite to the English.

Fig. 4.

We will now consider the drop, which is a clear loss of power, and, if excessive, is the cause of much irregularity. It should be as small as possible consistent with perfect freedom of action.

In so far as angular measurements are concerned, no hard and fast rule can be applied to it, the larger the escape wheel the smaller should be the angle allowed for drop. Authorities on the subject allow 1½° drop for the club and for the ratchet tooth. It is a fact that escape wheels are not cut perfectly true; the teeth are apt to bend slightly from the action of the cutters. The truest wheel can be made of steel, as each tooth can be successively ground after being hardened and tempered. Such a wheel would require less drop than one of any other metal. Supposing we have a  wheel with a primitive diameter of 7.5 mm., what is the amount of drop, allowing 1½° by angular measurement? 7.5 × 3.1416 ÷ 360 × 1.5 = .0983 mm., which is sufficient; a hair could get between the pallet and tooth, and would not stop the watch. Even after allowing for imperfectly divided teeth, we require no greater freedom even if the wheel is larger. Now suppose we take a wheel with a primitive diameter of 8.5 mm. and find the amount of drop; 8.5 × 3.1416 ÷ 360 × 1.5 = .1413 mm., or .1413 − .0983 = .043 mm., more drop than the smaller wheel, if we take the same angle. This is a waste of force. The angular drop should, therefore, be proportioned according to the size of the wheel. We wish it to be understood that common sense must always be our guide. When the horological student once arrives at this standpoint, he can intelligently apply himself to his calling.

The Draw.

—The draw or draft angle was added to the pallets in order to draw the fork back against the bankings and the guard point from the roller whenever the safety action had performed its function.

Diagram illustrating Draw.

Fig. 5.

Pallets with draw are more difficult to unlock than those without it, this is in the nature of a fault, but whenever there are two faults we must choose the less. The rate of the watch will suffer less on account of the recoil introduced than it would were the locking faces arcs of circles struck from the pallet center, in which case the guard point would often remain against the roller. The draw should be as light as possible consistent with safety of action; some writers allow 15° on the engaging and 12° on the disengaging pallet; others again allow 12° on each, which we deem sufficient. The draw is measured from the locking edges M and N, Fig. 5. The locking planes when locked are inclined 12° from EB, and FB. In the case of the engaging pallet it inclines toward the center A. The draw is produced on account of MA being longer than RA, consequently, when power is applied to the scape tooth S, the pallet is  drawn into the wheel. The disengaging pallet inclines in the same direction but away from the center A; the reason is obvious from the former explanation. Some people imagine that the greater the incline on the locking edge of the escape teeth, the stronger the draw would be. This is not the case, but it is certainly necessary that the point of the tooth alone should touch the pallet. From this it follows that the angle on the teeth must be greater than on the pallets; examine the disengaging pallet in Fig. 5, as it is from this pallet that the inclination of the teeth must be determined, as in the case of the engaging pallet the motion is toward the line of centers AB, and therefore away from the tooth, which partially explains why some people advocate 15° draw for this pallet. As illustrated in the case of the disengaging pallet, however, the motion is also towards the line of centers AB, and towards the tooth as well, all of which will be seen by the dotted circles MM2 and NN2, representing the paths of the pallets. It will be noticed that UNF and BNB are opposite and equal angles of 12°. For practical reasons, from a manufacturing standpoint, the angle on the tooth is made just twice the amount, namely 24°; we could make it a little less or a little more. If we made it less than 20° too great a surface would be in contact with the jewel, involving greater friction in unlocking and an inefficient draw, but in the case of an English lever

Pages