قراءة كتاب Researches on Cellulose 1895-1900
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
Researches on Cellulose 1895-1900
a thickener or colour vehicle, more especially as a substitute for albumen in pigment styles, was patented by E. B. Manby, but the process has not been industrially developed [E.P. 10,466 / 1894].
(c) Artificial silk.—This is a refinement of the earlier applications of the solution in spinning cellulose threads for conversion into carbon filaments for electrical glow-lamps. This section will be found dealt with on p. 59.
(p. 13) (2) Cuprammonium solution.—The application of the solution of cellulose in cuprammonium to the production of a fine filament in continuous length, 'artificial silk,' has been very considerably studied and developed in the period 1897-1900, as evidenced by the series of patents of Fremery and Urban, Pauly, Bronnert, and others. The subject will also be found dealt with on p. 58.
(p. 15) Reactions of cellulose with iodine.—In a recent paper, F. Mylius deals with the reaction of starch and cellulose with iodine, pointing out that the blue colouration depends upon the presence of water and iodides. In absence of the latter, and therefore in presence of compounds which destroy or absorb hydriodic acid—e.g. iodic acid—there results a brown addition product. The products in question have the characteristics of solid solutions of the halogen. (Berl. Ber. 1895, 390.)
(24) Mercerisation—Notwithstanding the enormous recent developments in the industrial application of the mercerising reaction, there have been no noteworthy contributions to the theoretical aspects of the subject. The following abstract gives an outline of the scope of an important technical work on the subject.
DIE MERCERISATION DER BAUMWOLLE.
Paul Gardner (Berlin: 1898. J. Springer).
THE MERCERISATION OF COTTON.
This monograph of some 150 pages is chiefly devoted to the patent literature of the subject. The chemical and physical modifications of the cotton substance under the action of strong alkaline lye, were set forth by Mercer in 1844-5, and there has resulted from subsequent investigations but little increase in our knowledge of the fundamental facts. The treatment was industrially developed by Mercer in certain directions, chiefly (1) for preparing webs of cloth required to stand considerable strain, and (2) for producing crêpon effects by local or topical action of the alkali. But the results achieved awakened but a transitory interest, and the matter passed into oblivion; so much so, indeed, that a German patent [No. 30,966] was granted in 1884 to the Messrs. Depouilly for crêpon effects due to the differential shrinkage of fabrics under mercerisation, by processes and treatments long previously described by Mercer. Such effects have had a considerable vogue in recent years, but it was not until the discovery of the lustreing effect resulting from the association of the mercerising actions with the condition of strain or tension of the yarn or fabric that the industry in 'mercerised' goods was started on the lines which have led to the present colossal development. The merit of this discovery is now generally recognised as belonging to Thomas and Prevost of Crefeld, notwithstanding that priority of patent right belongs to the English technologist, H. A. Lowe.
The author critically discusses the grounds of the now celebrated patent controversy, arising out of the conflict of the claims of German patent 85,564/1895 of the former, and English patent 4452/1890 of the latter. The author concludes that Lowe's specification undoubtedly describes the lustreing effect of mercerising in much more definite terms than that of Thomas and Prevost. These inventors, on the other hand, realised the effect industrially, which Lowe certainly failed to do, as evidenced by his allowing the patent to lapse. As an explanation of his failure, the author suggests that Lowe did not sufficiently extend his observations to goods made from Egyptian and other long-stapled cottons, in which class only are the full effects of the added lustre obtained.
Following these original patents are the specifications of a number of inventions which, however, are of insignificant moment so far as introducing any essential variation of the mercerising treatment.
The third section of the work describes in detail the various mechanical devices which have been patented for carrying out the treatment on yarn and cloth.
The fourth section deals with the fundamental facts underlying the process and effects summed up in the term 'mercerisation.' These are as follows:—
(a) Although all forms of fibrous celluloses are similarly affected by strong alkaline solutions, it is only the Egyptian and other long-stapled cottons—i.e. the goods made from them—which under the treatment acquire the special high lustre which ranks as 'silky.' Goods made from American cottons acquire a certain 'finish' and lustre, but the effects are not such as to have an industrial value—i.e. a value proportional to the cost of treatment.
(b) The lustre is determined by exposing the goods to strong tension, either when under the action of the alkali, or subsequently, but only when the cellulose is in the special condition of hydration which is the main chemical effect of the mercerising treatment.
(c) The degree of tension required is approximately that which opposes the shrinkage in dimensions, otherwise determined by the action of the alkali. The following table exhibits the variations of shrinkage of Egyptian when mercerised without tension, under varying conditions as regards the essential factors of the treatment—viz. (1) concentration of the alkaline lye, (2) temperature, and (3) duration of action (the latter being of subordinate moment):—