You are here

قراءة كتاب A Budget of Paradoxes, Volume I

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
A Budget of Paradoxes, Volume I

A Budget of Paradoxes, Volume I

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 2

Morgan's prime seems now like ancient history. Even with respect to well-known names, a little information as to dates and publications will often be welcome, although the editor recognizes that it will quite as often be superfluous. In order, therefore, to derive the pleasure that should come from reading the Budget, the reader should have easy access to the information that the notes are intended to supply. That they furnish too much here and too little there is to be expected. They are a human product, and if they fail to serve their purpose in all respects it is hoped that this failure will not seriously interfere with the reader's pleasure.

In general the present editor has refrained from expressing any opinions that would strike a discordant note in the reading of the text as De Morgan left it. The temptation is great to add to the discussion at various points, but it is a temptation to be resisted. To furnish such information as shall make the reading more pleasant, rather than to attempt to improve upon one of the most delicious bits of satire of the nineteenth century, has been the editor's wish. It would have been an agreeable task to review the history of circle squaring, of the trisection problem, and of the duplication of the cube. This, however, would be to go too far afield. For the benefit of those who wish to investigate the subject the editor can only refer to such works and articles as the following: F. Rudio, Archimedes, Huygens, Lambert, Legendre,—mit einer Uebersicht über die Geschichte des Problemes von der Quadratur des Zirkels, Leipsic, 1892; Thomas Muir, "Circle," in the eleventh edition of the Encyclopædia Britannica; the various histories of mathematics; and to his own article on "The Incommensurability of π" in Prof. J. W. A. Young's Monographs on Topics of Modern Mathematics, New York, 1911.

The editor wishes to express his appreciation and thanks to Dr. Paul Carus, editor of The Monist and The Open Court for the opportunity of undertaking this work; to James Earl Russell, LL.D., Dean of Teachers College, Columbia University, for his encouragement in its prosecution; to Miss Caroline Eustis Seely for her intelligent and painstaking assistance in securing material for the notes; and to Miss Lydia G. Robinson and Miss Anna A. Kugler for their aid and helpful suggestions in connection with the proof-sheets. Without the generous help of all five this work would have been impossible.

David Eugene Smith.

Teachers College, Columbia University.


A BUDGET OF PARADOXES

INTRODUCTORY.

If I had before me a fly and an elephant, having never seen more than one such magnitude of either kind; and if the fly were to endeavor to persuade me that he was larger than the elephant, I might by possibility be placed in a difficulty. The apparently little creature might use such arguments about the effect of distance, and might appeal to such laws of sight and hearing as I, if unlearned in those things, might be unable wholly to reject. But if there were a thousand flies, all buzzing, to appearance, about the great creature; and, to a fly, declaring, each one for himself, that he was bigger than the quadruped; and all giving different and frequently contradictory reasons; and each one despising and opposing the reasons of the others—I should feel quite at my ease. I should certainly say, My little friends, the case of each one of you is destroyed by the rest. I intend to show flies in the swarm, with a few larger animals, for reasons to be given.

In every age of the world there has been an established system, which has been opposed from time to time by isolated and dissentient reformers. The established system has sometimes fallen, slowly and gradually: it has either been upset by the rising influence of some one man, or it has been sapped by gradual change of opinion in the many.

I have insisted on the isolated character of the dissentients, as an element of the a priori probabilities of the case. Show me a schism, especially a growing schism, and it is another thing. The homeopathists, for instance, shall be, if any one so think, as wrong as St. John Long; but an

organized opposition, supported by the efforts of many acting in concert, appealing to common arguments and experience, with perpetual succession and a common seal, as the Queen says in the charter, is, be the merit of the schism what it may, a thing wholly different from the case of the isolated opponent in the mode of opposition to it which reason points out.

During the last two centuries and a half, physical knowledge has been gradually made to rest upon a basis which it had not before. It has become mathematical. The question now is, not whether this or that hypothesis is better or worse to the pure thought, but whether it accords with observed phenomena in those consequences which can be shown necessarily to follow from it, if it be true. Even in those sciences which are not yet under the dominion of mathematics, and perhaps never will be, a working copy of the mathematical process has been made. This is not known to the followers of those sciences who are not themselves mathematicians and who very often exalt their horns against the mathematics in consequence. They might as well be squaring the circle, for any sense they show in this particular.

A great many individuals, ever since the rise of the mathematical method, have, each for himself, attacked its direct and indirect consequences. I shall not here stop to point out how the very accuracy of exact science gives better aim than the preceding state of things could give. I shall call each of these persons a paradoxer, and his system a paradox. I use the word in the old sense: a paradox is something which is apart from general opinion, either in subject-matter, method, or conclusion.

Many of the things brought forward would now be called crotchets, which is the nearest word we have to old paradox. But there is this difference, that by calling a thing a crotchet we mean to speak lightly of it; which was not the necessary sense of paradox. Thus in the sixteenth century many spoke of the earth's motion as the paradox of

Copernicus, who held the ingenuity of that theory in very high esteem, and some, I think, who even inclined towards it. In the seventeenth century, the depravation of meaning took place, in England at least. Phillips says paradox is "a thing which seemeth strange"—here is the old meaning: after a colon he proceeds—"and absurd, and is contrary to common opinion," which is an addition due to his own time.

Some of my readers are hardly inclined to think that the word paradox could once have had no disparagement in its meaning; still less that persons could have applied it to themselves. I chance to have met with a case in point against them. It is Spinoza's Philosophia Scripturæ Interpres, Exercitatio Paradoxa, printed anonymously at Eleutheropolis, in 1666. This place was one of several cities in the clouds, to which the cuckoos resorted who were driven away by the other birds; that is, a feigned place of printing, adopted by those who would have caught it if orthodoxy could have caught them. Thus, in 1656, the works of Socinus could only be printed at Irenopolis. The author deserves his self-imposed title, as in the following:[4]

"Quanto sane satius fuisset illam [Trinitatem] pro mysterio non habuisse, et

Pages