You are here

قراءة كتاب Time and Tide: A Romance of the Moon

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Time and Tide: A Romance of the Moon

Time and Tide: A Romance of the Moon

تقييمك:
0
No votes yet
دار النشر: Project Gutenberg
الصفحة رقم: 9

some eminent ones too, while admitting that of course the tides must have drawn their energy from one or other or both of these two sources, yet found themselves unable to assign how the demand was distributed between the two conceivable sources of supply.

We are indebted to Professor Purser of Belfast for having indicated the true dynamical principle on which the problem depends. It involves reasoning based simply on the laws of motion and on elementary mathematics, but not in the least involving questions of astronomical observation. It would be impossible for me in a lecture like this to give any explanation of the mathematical principles referred to. I shall, however, endeavour by some illustrations to set before you what this profound principle really is. Were I to give it the old name I should call it the law of the conservation of areas; the more modern writers, however, speak of it as the conservation of moment of momentum, an expression which exhibits the nature of the principle in a more definite manner.

I do not see how to give any very accurate illustration of what this law means, but I must make the attempt, and if you think the illustration beneath the dignity of the subject, I can only plead the difficulty of mathematics as an excuse. Let us suppose that a ball-room is fairly filled with dancers, or those willing to dance, and that a merry waltz is being played; the couples have formed, and the floor is occupied with pairs who are whirling round and round in that delightful amusement. Some couples drop out for a while and others strike in; the fewer couples there are the wider is the range around which they can waltz, the more numerous the couples the less individual range will they possess. I want you to realize that in the progress of the dance there is a certain total quantity of spin at any moment in progress; this spin is partly made up of the rotation by which each dancer revolves round his partner, and partly of the circular orbit about the room which each couple endeavours to describe. If there are too many couples on the floor for the general enjoyment of the dance, then both the orbit and the angular velocity of each couple will be restricted by the interference with their neighbours. We may, however, assert that so long as the dance is in full swing the total quantity of spin, partly rotational and partly orbital, will remain constant. When there are but few couples the unimpeded rotation and the large orbits will produce as much spin as when there is a much larger number of couples, for in the latter case the diminished freedom will lessen the quantity of spin produced by each individual pair. It will sometimes happen too that collision will take place, but the slight diversions thus arising only increase the general merriment, so that the total quantity of spin may be sustained, even though one or two couples are placed temporarily hors de combat. I have invoked a ball-room for the purpose of bringing out what we may call the law of the conservation of spin. No matter how much the individual performers may change, or no matter what vicissitudes arise from their collision and other mutual actions, yet the total quantity of spin remains unchanged.

Let us look at the earth-moon system. The law of the conservation of moment of momentum may, with sufficient accuracy for our present purpose, be interpreted to mean that the total quantity of spin in the system remains unaltered. In our system the spin is threefold; there is first the rotation of the earth on its axis, there is the rotation of the moon on its axis, and then there is the orbital revolution of the moon around the earth. The law to which we refer asserts that the total quantity of these three spins, each estimated in the proper way, will remain constant. It matters not that tides may ebb and flow, or that the distribution of the spin shall vary, but its total amount remains inflexibly constant. One constituent of the total amount—that is, the rotation of the moon on its axis—is so insignificant, that for our present purposes it may be entirely disregarded. We may therefore assert that the amount of spin in the earth, due to its rotation round its axis, added to the amount of spin in the moon due to its revolution round the earth, remains unalterable. If one of these quantities change by increase or by decrease, the other must correspondingly change by decrease or by increase. If, therefore, from any cause, the earth began to spin a little more quickly round its axis, the moon must do a little less spin; and consequently, it must shorten its distance from the earth. Or suppose that the earth's velocity of rotation is abated, then its contribution to the total amount of spin is lessened; the deficiency must therefore be made up by the moon, but this can only be done by an enlargement of the moon's orbit. I should add, as a caution, that these results are true only on the supposition that the earth-moon system is isolated from all external interference. With this proviso, however, it matters not what may happen to the earth or moon, or what influence one of them may exert upon the other, no matter what tides may be raised, no matter even if the earth fly into fragments, the whole quantity of spin of all those fragments would, if added to the spin of the moon, yield the same unalterable total. We are here in possession of a most valuable dynamical principle. We are not concerned with any special theory as to the action of the tides; it is sufficient for us that in some way or other the tides have been caused by the moon, and that being so, the principle of the conservation of spin will apply.

Were the earth and the moon both rigid bodies, then there could be of course no tides on the earth, it being rigid and devoid of ocean. The rotation of the earth on its axis would therefore be absolutely without change, and therefore the necessary condition of the conservation of spin would be very simply attained by the fact that neither of the constituent parts changed. The earth, however, not being entirely rigid, and being subject to tides, this simple state of things cannot continue; there must be some change in progress.

I have already shown that the fact of the ebbing and the flowing of the tide necessitates an expenditure of energy, and we saw that this energy must come either from that stored up in the earth by its rotation, or from that possessed by the moon in virtue of its distance and revolution. The law of the conservation of spin will enable us to decide at once as to whence the tides get their energy. Suppose they took it from the moon, the moon would then lose in energy, and consequently come nearer the earth. The quantity of spin contributed by the moon would therefore be lessened, and accordingly the spin to be made up by the earth would be increased. That means, of course, that the velocity of the earth rotating on its axis must be increased, and this again would necessitate an increase in the earth's rotational energy. It can be shown, too, that to keep the total spin right, the energy of the earth would have to gain more than the moon would have lost by revolving in a smaller orbit. Thus we find that the total quantity of energy in the system would be increased. This would lead to the absurd result that the action of the tides manufactured energy in our system. Of course, such a doctrine cannot be true; it would amount to a perpetual motion! We might as well try to get a steam-engine which would produce enough heat by friction not only to supply its own boilers, but to satisfy all the thermal wants of the whole parish. We must therefore adopt the other alternative. The tides do not draw their energy from the moon; they draw it from the store possessed by the

Pages