قراءة كتاب Scientific American Supplement, No. 1082, September 26, 1896

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Scientific American Supplement, No. 1082, September 26, 1896

Scientific American Supplement, No. 1082, September 26, 1896

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 5

at the table," said he, "was carefully saved and made over into croquettes. Men who work their way through college cannot afford to throw away their food." But actual examination showed the waste to be considerable. The estimates of the quantities of nutrients were based upon the quantities of food materials for a term of three months and upon the table and kitchen refuse for a week. The results were as follows: In food purchased, protein, 161 grammes; energy, 5,345 calories. In waste, protein, 23 grammes; energy, 520 calories. In food consumed, protein, 138 grammes; energy, 4,825 calories. One-eighth of the protein and one-tenth of the energy were simply thrown away.

During the succeeding term a second examination of the dietary of the same club was made. Another steward was then in charge. He had learned of the excessive amounts of food in the former dietary, and planned to reduce the quantities. This was done largely by diminishing the meats. He stated that he did not apprise the club of the change, and that it was not noticed. As he put it, "The boys had all they wanted, and were just as well pleased as if they had more." Estimates as before but with more care in determining the waste, showed in food purchased, protein, 115 grammes; energy, 3,875 calories. In waste, protein, 11 grammes; energy, 460 calories. In food consumed, protein, 104 grammes; energy, 3,415 calories. One-tenth of the nutritive material of the food this time was thrown away. The young men were amply nourished with three-fifths of the nutrients they had purchased in the previous term.

How much food is required on the average by men whose labor is mainly intellectual is a question to which physiology has not yet given a definite answer, but it is safe to say that the general teaching of the specialists who have given the most attention to the subject would call for little more than the 104 grammes of protein and very much less than the 3,400 calories of energy in the food estimated to be actually consumed by these young men when the second examination was made. They could have dispensed with half of all the meats, fish, oysters, eggs, milk, butter, cheese, and sugar purchased for the first dietary and still have had more nutritive material than they consumed in the second. Not only was one-tenth or more of the nutrients thrown away in each of the two cases, but what makes the case still worse pecuniarily, the rejected material was very largely from the animal foods in which it is the most expensive.

The estimates of the quantities of food in the two dietaries just quoted were made from tradesmen's bills and the composition was calculated from analyses of similar materials rather than of those actually used. The figures are therefore less reliable than if the foods and wastes had been actually weighed and analyzed. In some dietaries lately examined in Middletown, Conn., all the food has been carefully weighed and portions have been analyzed, and the same has been done with the table and kitchen refuse. The results, therefore, show exactly how much was purchased, consumed and thrown away. One dietary so investigated was that of a boarding house. The boarders were largely mechanics of superior intelligence and skill, and earning good wages; the mistress was counted an excellent housekeeper and the boarding house a very good one. About one-ninth of the total nutritive ingredients of the food was left in the kitchen and table refuse. The actual waste was worse than this proportion would imply, because it consisted mostly of the protein and fats, which are more costly than the carbohydrates. The waste contained nearly one-fifth of the total protein and fat, and only one-twentieth of the total carbohydrates of the food. Or to put it in another way, the food purchased contained about 23 per cent. more protein, 24 per cent. more fats, and 6 per cent. more carbohydrates than were eaten. And worst of all for the pecuniary economy, or lack of economy, the wasted protein and fats were mostly from the meats which supply them in the costliest form.

In another dietary, that of a carpenter's family, also in Middletown Conn., 7.6 per cent. of the total food purchased was left in the kitchen and table wastes. The total waste was somewhat worse than this proportion would imply, because it consisted mostly of the protein and fats, which are more costly than the carbohydrates. The waste contained about one-tenth of the total protein and fat and only one-twenty-fifth of the total carbohydrates of the food. At the rate in which the nutrients were actually eaten in this dietary, the protein and fats in the waste would have each supplied one man for a week and the carbohydrates for three days.

These cases are probably exceptional; at least it is to be hoped that they are. Among eight dietaries lately studied in Middletown those above named showed the largest proportion of material thrown away. In the rest it was much less. In two cases there was almost none. It is worth noting, however, that the people in these two had the largest incomes of all. In other words the best-to-do families were the least wasteful.

This form of bad economy is not confined to the kitchen, but begins in the market.... The common saying that "the average American family wastes as much food as a French family would live upon" is a great exaggeration, but the statistics cited show that there is a great deal of truth in it. Even in some of the most economical families the amount of food wasted, if it could be collected for a month or a year, would prove to be very large, and in many cases the amounts would be little less than enormous.—W.O. Atwater, Charities Review.

[1] Statistics are also given showing that the professional men of certain European countries live comfortably and have good health on much less than Americans of the same occupation.—ED.


THE COLORS NAMED IN LITERATURE.

Mr. Havelock Ellis has made (Contemporary Review, May) an interesting study of the color terms used by imaginative writers, which is a real contribution to scientific æsthetics. The fact that the Greeks did not name green and blue does not, of course, indicate (as Mr. Gladstone and others have alleged) that they could not see the more refrangible rays of the spectrum, but it does show a lack of interest in these colors. Mr. Ellis' statistics are given in the annexed table, the number of times each of the colors is used by the author in selected passages being reduced to percentages.

White. Yellow. Red. Green. Blue. Black. PREDOMINANT
Mountain of Chant 28 13 3 ... 19 37 Black, white.
Wooing of Emer 34 3 48 ... ... 14 Red, white.
Volsunga Saga 14 ... 71 ... 14 ... Red.
Isaiah, Job, Song of Songs 18 4 29 33 ... 15 Green, red.
Homer 21 21 7 2 ... 49 Black, white-yellow.
Catullus 40 21 17 9 4 8 White, yellow.
Chaucer 34 10 28 14 1 13 White, red.
Marlowe 19 21 19 6 6 28 Black, yellow.
Shakespeare 22 17 30 7 4 20 Red, white.
Thomson 9 ... 18 27 9

Pages