You are here
قراءة كتاب James Cutbush An American Chemist, 1788-1823
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
JAMES CUTBUSH
JAMES CUTBUSH
AN AMERICAN CHEMIST
1788-1823
BY
EDGAR F. SMITH
PROVOST OF THE UNIVERSITY OF PENNSYLVANIA
Let us preserve the memory of the
deserving; perhaps it may prompt
others likewise to deserve—
PHILADELPHIA, PA.
1919
PRINTED BY J. B. LIPPINCOTT COMPANY
TO
MY FELLOW-CHEMISTS
PREFACE
There is nothing thrilling in the following pages. They contain the story of the life-work of a very modest man deeply interested in and enamoured with the science of chemistry, who sought also to inspire others and to familiarize the general public of his time with the intimate connection of chemistry with manufactures and things which enter so largely into every-day occupations. He was an active member of a small group of chemists who, in the early years of eighteen hundred, caused thousands of the laity to give thought to the possibilities of Chemistry, and in addition was a pioneer in pyrotechnics, on which account he is deservedly entitled to every recognition. More than a century has passed since his most serious efforts were put forth. However, it will not be long until that early galaxy of chemical enthusiasts of which he was a member will be accorded a high place in the history of the development of the science in America.
JAMES CUTBUSH
AN AMERICAN CHEMIST
1788-1823
It is scarcely conceivable that anything pertaining to the development of chemical science in America would fail to interest its chemists. The response to the needs of the Nation in the last few years has shown how marvelously they wrought and the wonderful things which they brought to light. Yet in the long ago—in the days of which we only know by hearsay, and through desultory reading, there lived chemists with enthusiasm, knowledge and initiative, whose aim it was to have their chosen science contribute to the welfare of humanity. In the labors of such men as James Woodhouse, Robert Hare, Adam Seybert, Henry Seybert, John Redman Coxe, Joseph Cloud, Gerard Troost, and many others, the scientific spirit predominated, although with it went the purpose, more or less sharply defined, of making their acquirements useful. Particularly noticeable was this in the instance of Woodhouse.
The general consensus of opinion among present-day chemists is that chemistry should be helpful to all. It may and should be scientific, but its principles ought to be scientifically applied in every useful manner.
The reader, desirous of learning the aims and ambitions of the fathers of the science in our country, will profit by turning to the files of the Aurora, an old daily paper of Philadelphia, for the year 1808, and beginning about the middle of July will there encounter a most interesting series of articles on the applications of chemistry under the general heading
APPLICATION OF CHEMISTRY TO ARTS AND MANUFACTURES
There are fifteen separate papers. In considering the period—1808,—the age of the young Republic, and that the times were far from quiet; that unrest and uncertainty prevailed as to the fate of the Republic, it does not surprise that thought should have been given to means of protection; hence gunpowder was the very first product to engage the author of the series of articles. The proving and analysis of the powder are discussed at length. The methods appear very primitive in the light of present-day knowledge, but one must not forget the period. One hundred years hence the masterpieces of present-day chemists will perhaps provoke smiles upon the countenances of those who perchance read them. In this pioneer contribution on gunpowder analysis the charcoal of the powder is often called "oxid of carbon." In referring to the separation of potassium and sodium it is recommended to precipitate out the first in the form of tartrate. Naturally, nitre itself comes in for serious thought and the explosibility of the mixture of charcoal, nitre and sulphur arrests the author's attention, for he emphasizes the fact—
"that, independent of the formation of gases or airs, the agency of caloric, or matter of heat, generated in the process of combustion, considerably facilitates the strength of the powder, in consequence of producing the expansion of these airs."
Recently, under the pressure of a national necessity, which will not soon be forgotten, the problem of getting nitre—nitrates and kindred bodies—had the earnest attention of chemists. So, in the period before and after 1808, methods of forming nitre had grave consideration. For instance, this question, now amusing, was propounded—
"How much nitre could be manufactured from the refuse animal and vegetable matter of the City of Philadelphia in case of emergency? What quantity could be prepared by elixating or washing the rubbish of old buildings, the earth of stables, cellars, etc., and the soil of certain tracts of the United States?"
It is quite proper that mention should have also been made of the natural nitre beds, as well as of the artificial beds built up from slow experience. Reference is made that in France nitre was won from the lime and rubbish of old, ruinous buildings, and from the floors of stables and pigeon houses, while it is also recorded that during the American Revolution, the
"same means, by the hand of economy and industry, afforded quantities of this article in certain of the then Colonies, and"
that in the Southern portions it was obtained from the earthen floors of tobacco houses.
The presentation of the earliest methods of getting nitre is extremely interesting, extended and elaborate, giving the reader a full view of pioneer conditions and endeavor. The scheme of purification of nitre for gunpowder use is illuminating and attractive. Attention is directed to the saltpetre rock and caves of the western portion of our country.
The preparation of charcoal is discussed. The adaptability of charcoal from various sources receives careful thought in connection with its use in gunpowder; so, too, the sulphur used for this particular purpose, and there is recommended as a source of this ingredient, the common pyrites so abundant throughout the States. Among other topics, of vital interest in these days, discussed in the continuing articles, is the manufacture of spirit from potatoes. The method employed in Germany is presented in detail after which it is said—
"Potato spirit of excellent quality has been made in this city (Philadelphia). It is found, not only to be much cheaper than grain used entirely, but to afford better flavoured liquor and other qualities which give it a decided preference."
Fermentation, yeast and baking receive mention. Brewing and the different kinds of beer are fully examined. In those days adulteration was practiced, for wormwood and quassia were found as substitutes. The preparation of beer and ale for home consumption would very likely find little favor in the