قراءة كتاب Elements of Agricultural Chemistry

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Elements of Agricultural Chemistry

Elements of Agricultural Chemistry

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 4

been observed. These are—

Potash.
Soda.
Lime.
Magnesia.
Peroxide of Iron.
Silicic Acid.
Phosphoric Acid.
Sulphuric Acid.
Chlorine.

And more rarely

Manganese.
Iodine.
Bromine.
Fluorine.

Several other substances, among which may be mentioned alumina and copper, have also been enumerated; but there is every reason to believe that they are not essential, and the cases in which they have been found are quite exceptional.

It is to be especially noticed that none of these substances occur in plants in the free or uncombined state, but always in the form of compounds of greater or less complexity, and extremely varied both in their properties and composition.

It would be out of place, in a work like the present, to enter into complete details of the properties of the elements of which plants are composed, which belongs strictly to pure chemistry, but it is necessary to premise a few observations regarding the organic elements, and their more important compounds.

Carbon.—When a piece of wood is heated in a close vessel, it is charred, and converted into charcoal. This charcoal is the most familiar form of carbon, but it is not absolutely pure, as it necessarily contains the ash of the wood from which it was made. In its purest form it occurs in the diamond, which is believed to be produced by the decomposition of vegetable matters, and it is there crystallized and remarkably transparent; but when produced by artificial processes, carbon is always black, more or less porous, and soils the fingers. It is insoluble in water, burns readily, and is converted into carbonic acid. Carbon is the largest constituent of plants, and forms, in round numbers, about 50 per cent of their weight when dry.

Carbonic Acid.—This, the most important compound of carbon and oxygen, is best obtained by pouring a strong acid upon chalk or limestone, when it escapes with effervescence. It is a colourless gas, extinguishing flame, incapable of supporting respiration, much heavier than atmospheric air, and slightly soluble in water, which takes up its own volume of the gas. It is produced abundantly when vegetable matters are burnt, as also during respiration, fermentation, and many other processes. It is likewise formed daring the decay of animal and vegetable matters, and is consequently evolved from dung and compost heaps.

Hydrogen occurs in nature only in combination. Its principal compound is water, from which it is separated by the simultaneous action of an acid, such as sulphuric acid and a metal, in the form of a transparent gas, lighter than any other substance. It is very combustible, burns with a pale blue flame, and is converted into water. It is found in all plants, although in comparatively small quantity, for, when dry, they rarely contain more than four or five per cent. Its most important compound is water, of which it forms one-ninth, the other eight-ninths consisting of oxygen.

Nitrogen exists abundantly in the atmosphere, of which it forms nearly four-fifths, or, more exactly, 79 per cent. It is there mixed, but not combined with oxygen; and when the latter gas is removed, by introducing into a bottle of air some substance for which the former has an affinity, the nitrogen is left in a state of purity. It is a transparent gas, which is incombustible and extinguishes flame. It is a singularly inert substance, and is incapable of directly entering into union with any other element except oxygen, and with that it combines with the greatest difficulty, and only by the action of the electric spark—a peculiarity which has very important bearings on many points we shall afterwards have to discuss. Nitrogen is found in plants to the extent of from 1 to 4 per cent.

Nitric Acid.—This, the most important compound of nitrogen and oxygen, can be produced by sending a current of electric sparks through a mixture of its constituents, but in this way it can be obtained only in extremely small quantity. It is much more abundantly produced when organic matters are decomposed with free access of air, in which case the greater proportion of their nitrogen combines with the atmospheric oxygen. This process, which is known by the name of nitrification, is greatly promoted by the presence of lime or some other substance, with which the nitric acid may combine in proportion as it is formed. It takes place, to a great extent, in the soil in India and other hot climates; and our chief supplies of saltpetre, or nitrate of potash, are derived from the soil in these countries, where it has been formed in this manner. The same change occurs, though to a much smaller extent, in the soil in temperate climates.

Ammonia is a compound of nitrogen and hydrogen, but it cannot be formed by the direct union of these gases. It is a product of the decomposition of organic substances containing nitrogen, and is produced when they are distilled at a high temperature, or allowed to putrefy out of contact of the air. In its pure state it is a transparent and colourless gas, having a peculiar pungent smell, and highly soluble in water. It is an alkali resembling potash and soda, and, like these substances, unites with the acids and forms salts, of which the sulphate and muriate are the most familiar. In these salts it is fixed, and does not escape from them unless they be mixed with lime, or some other substance possessing a more powerful affinity for the acid with which it is united.

Oxygen is one of the most widely distributed of all the elements, and, owing to its powerful affinities, is the most important agent in almost all natural changes. It is found in the air, of which it forms 21 per cent, and in combination with hydrogen, and almost all the other chemical elements. In the pure state it possesses very remarkable properties. All substances burn in it with greater brilliancy than they do in atmospheric air, and its affinity for most of the elements is extremely powerful. When diluted with nitrogen, it supports the respiration of animals; but in the pure state it proves fatal after the lapse of an hour or two. It is found in plants, in quantities varying from 30 to 36 per cent.

It is worthy of observation, that of the four organic elements, carbon only is fixed, and the other three are gases; and likewise, when any two of them unite, their compound is either a gaseous or a volatile substance. The charring of organic substances, which is one of their most characteristic properties, and constantly made use of by chemists as a distinctive reaction, is due to this peculiarity; for when they are heated, a simpler arrangement of their particles takes place, the hydrogen, nitrogen, and oxygen unite among themselves, and carry off a small quantity of carbon, while the remainder is left behind in the form of charcoal, and is only consumed when access of the external air is permitted.

Now, in order that a plant may grow, its four organic constituents must be absorbed by it, and that this absorption may take place, it is essential that they be presented to it in suitable forms. A seed may be planted in pure carbon, and supplied with unlimited quantities of hydrogen, nitrogen, oxygen, and inorganic substances, and it will not germinate; and a plant, when placed in similar circumstances, shows no disposition to increase, but rapidly languishes and dies. The obvious inference from these facts is, that these substances cannot be absorbed

Pages