قراءة كتاب The Stock-Feeder's Manual the chemistry of food in relation to the breeding and feeding of live stock
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

The Stock-Feeder's Manual the chemistry of food in relation to the breeding and feeding of live stock
relatively quite insignificant in amount.
Plants are unendowed with organs of locomotion, their food must therefore be within easy reach. Every breeze wafts gaseous nutriment to their expanded leaves, and their rootlets ramify throughout the soil in search of appropriate mineral aliment. But no matter how abundant, or however easy of reach may be the food of plants, the vegetable organism is incapable of partaking of it unless under the influence of light. Exposed to this potent stimulus, the plant collects the gaseous carbonic acid and the vaporous water, solidifies them, decomposes them, and combines their elements into new and organised forms. In effecting these changes—in conferring vitality upon the atoms of lifeless matter—the plant acts merely as the mechanism, the light is the force. As the work performed by the steam-engine is proportionate to the amount of force developed by the combustion of the fuel beneath its boiler, so is the rapidity of the elaboration of organic substances by plants proportionate to the amount of sunlight to which they are exposed. It is an axiom that matter is indestructible; we may alter its form as often as we please, but we cannot destroy a particle of it. It is the same with force: we may convert one kind of it into another—heat into light, or magnetism into electricity—but our power ends there; we can only cause force, or motion, to pass from one of its conditions to another, but its quantity can never be diminished by the power of man.
The principle of the Conservation of the Forces gives us a clear explanation of the fact that animals can obtain their food only through the medium of the vegetable kingdom. Plants are stationary mechanisms; they have no need to develop motive power, as animals have, in moving themselves from place to place. Their temperature is, we may say, the same as that of the medium in which they exist. Such beings as plants do not, therefore, require the expenditure of force to maintain their vitality; on the contrary, their mechanisms are, for a beneficent purpose, constructed for the accumulation of force. The growing plant absorbs, together with carbonic acid, water, and ammonia, a proportionate amount of light, heat, and the various other subtile forces which have their abiding place in the sun-beam—
"That golden chain,
Whose strong embrace holds heaven and earth and main." Co-incidentally with the conversion of the mineral constituents of the food of plants into organised structures—albumen, fibre, and such like substances—the light, and the heat, and the various other forces likewise suffer a change. Although the precise nature of the new force into which they are converted is still a mystery—one, too, which may never be revealed to us—still we know sufficient of it to satisfy us that it can only exist in connection with organic or organised structures. It is owing to its presence that the elements of these structures (the natural state of which is mineral) are bound together in what may be aptly designated a constrained state; or, as Liebig aptly expresses it, like the matter in a bent spring. So long as the organic structure retains its form, it will be a reservoir of latent force—which will manifest itself in some form during the recoil of the atoms of the matter forming the structure to their original mineral, or statical condition: so the bent spring, when the pressure is removed, returns to its original straight form.
Animal Life.—The chief manifestation of the life of a plant is the accumulation of force; very different are the functions of animal life. It is only by the continuous expenditure of force that the vitality of animals is preserved; the heat of a man's body, his power of locomotion, the performance of his daily toil, even his very faculty of thought, are all dependent upon, and to a great extent proportionate to, the amount of organised matter disorganised in his body. It is by the conversion of this organised matter into its original mineral state of water, carbonic acid, and ammonia, that the force originally expended in arranging, through the agency of plants, its atoms, is again restored, chiefly in the form of heat and animal motive power.
Animals, as a class, are completely dependent upon vegetables for their existence. There is every reason to believe that the most lowly organised beings in the scale of animal life, even those of so simple a structure as to have been long regarded as vegetables or as plant-animals, are incapable of organising mineral matter. The so-called vegetative life of animals—for I believe the term to be exceedingly inexact—is applied to their growth, that is, to the increase in their weight. This increase takes place by their power of reorganising, or of assimilating to the nature of their own organisms, certain of the substances elaborated by plants, and destined to become food for animals.
SECTION II.
COMPOSITION OF ORGANIC SUBSTANCES.
Elements of Organic Bodies.—The number of distinct kinds of substances—each distinguishable from all the others by the peculiarity of its properties, taken as a whole—is exceedingly great, yet all these substances are resolvable into a very small number of bodies. As an illustration, I shall take a well-known substance, common green copperas, or, as the chemists term it, protosulphate of iron. By submitting this compound to the process termed chemical analysis, two other kinds of matter may be obtained from it, namely, oxide of iron and oil of vitrol, or sulphuric acid. If we continued this process—if we submitted the acid and the oxide to analysis—we could separate the former into sulphur and oxygen, and the latter into iron and oxygen. Now, by these means we could demonstrate the compound nature of copperas; we could prove that it was proximately composed of sulphuric acid and oxide of iron; and, ultimately, of iron, sulphur, and oxygen.
Iron, sulphur, and oxygen, are elementary, or simple bodies. They cannot be decomposed; they cannot be analysed. Torture them as we will in our crucibles; expose them as we please to the highest temperature of a wind furnace, or to the more intense heat evolved by a powerful galvanic battery; subject them to the influence of any agent, or force, or process we may choose, and still they will yield nothing but iron, sulphur, and oxygen: hence these undecomposable bodies are regarded as elements, or simple substances. So far as our knowledge extends, there are about sixty-six of these undecomposable bodies, of which about one half occurs in but exceedingly minute quantities, and a considerable number of the others exists in comparatively small amounts. As by far the greater proportion of compounds is made up of two or more of about a dozen elementary bodies, it would at first sight appear as if the distinct kinds of compounds which exist, or which may be called into existence by the chemist, must be limited to, at most, a realisable number; but the fact is there is no practical limit to the variety of substances which may be artificially formed. Every difference in the mode of the arrangement of the constituent atoms of a compound, causes its metamorphosis into another kind of substance. To prove that the number of these changes is bounded by no narrow limits, I need but refer to the rules of Permutation, which demonstrate that twelve letters of the alphabet may be arranged in no fewer than 479,000,000 different ways.
public@vhost@g@gutenberg@html@files@25520@[email protected]#note-1" class="pginternal"

