You are here
قراءة كتاب Lectures in Navigation
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
30, 40, etc., fathoms are shown.
10. A light is indicated by a red and yellow spot. F. means fixed, Fl., flashing; Int., intermittent; Rev., revolving, etc.
11. An arrow indicates a current and its direction. The speed is always given.
12. Rocks just under water are shown by a cross surrounded by a dotted circle; rocks above water, by a dotted circle with dots inside it.
Practically all charts you will use will be called Mercator charts. Just how they are constructed is a difficult mathematical affair but, roughly, the idea of their construction is based upon the earth being a cylinder, instead of a sphere. Hence, the meridians of longitude, instead of converging at the poles, are parallel lines. This compels the parallels of latitude to be adjusted correspondingly. Although such a chart in any one locality is out of proportion compared with some distant part of the earth's surface, it is nevertheless in proportion for the distance you can travel in a day or possibly a week - and that is all you desire. The Hydrographic Office publishes blank Mercator charts for all latitudes in which they can be used for plotting your position. It makes no difference what longitude you are in for, on a Mercator chart, meridians of longitude are all marked parallel. It makes a great difference, however, what latitude you are in, as in each a mile is of different length on the chart. Hence, it will be impossible for you to correctly plot your course and distance sailed unless you have a chart which shows on it the degrees of latitude in which you are. For instance, if your Mercator chart shows parallels of latitude from 30° to 40° that chart must be used when you are in one of those latitudes. When you move into 41° or 29°, you must be sure to change your plotting chart accordingly. In very high latitudes and near the North pole, the Mercator chart is worthless. How can you steer for the North pole when the meridians of your chart never come together at any pole? For the same reason, bearings of distant objects may be slightly off when laid down on this chart in a straight line. On the whole, however, the Mercator chart answers the mariner's needs so far as all practical purposes are concerned.
The instruments used in consulting a chart, i.e., parallel rulers, dividers, etc. have already been described. The only way to lay down a course and read it is by practice.
The one important thing to remember in laying down a course, is that what you lay down is a true course. To steam this course yourself, you must make the proper correction for your compass error.
Assign for Night Work in Bowditch, Arts. 9-239-240-241-243-244-245-246-247-248-249-251-252-253-254-255-256-257-258.
If any time in class room is left, spend it in laying down courses on the chart and reading them; also in answering such questions as these:
1. I desire to sail a true course of NE. My compass error is 2 points Westerly Variation and 1 point Easterly Deviation. What compass course shall I sail?
2. I desire to sail a true course of SW x W. My Variation is 11° W, Deviation 2 pts. W and Leeway 1 pt. starboard. What compass course shall I sail?
3. I desire to sail a true course of 235°. My compass error is 4 pts. E Variation, 27° W Deviation, Leeway 1 pt. port. What compass course shall I sail?
4. I desire to sail a true course of S 65° W. My compass error is 10° E Variation, 3° E Deviation, Leeway ¼ point starboard. What compass course shall I sail?
FRIDAY LECTURE
The Protractor And Sextant
The protractor is an instrument used to shape long courses. There are many kinds. The simplest and the one most in use is merely a piece of transparent celluloid with a compass card printed on it and a string attached to the center of the compass card. To find your course by protractor, put the protractor down on the chart so that the North and South line on the compass card of the protractor will be immediately over a meridian of longitude on the chart, or be exactly parallel to one, and will intersect the point from which you intend to depart. Then stretch your string along the course you desire to steam. Where this string cuts the compass card, will be the direction of your course. Remember, however, that this will be the true course to sail. In order to convert this true course into your compass course, allow for Variation and Deviation according to the rules already given you.
In case you know the exact amount of Variation and Deviation at the time you lay down the course - and your course is not far - you can get your compass course in one operation by setting the North point of your protractor as far East or West of the meridian as the amount of your compass error is. By then proceeding as before, the course indicated on the compass card will be the compass course to sail. This method should not be used where your course in one direction is long or where your course is short but in two or more directions. The reason for this is that in both cases, either your Variation or Deviation may change and throw you off.
Practically all navigation in strange waters in sight of land and in all waters out of sight of land depends upon the determination of angles. The angle at which a lighthouse is seen from your ship will give you much information that may be absolutely necessary for your safety. The angular altitude of the sun, star or planet does the same. The very heart of Navigation is based upon dealing with angles of all kinds. The instrument, therefore, that measures these angles is the most important of any used in Navigation and you must become thoroughly familiar with it. It is the sextant or some member of the sextant family - such as the quadrant, octant, etc. The sextant is the one most in use and so will be described first.
Put in your Note-Book:
The sextant has the following parts: (Instructor points to each.)
| 1. Mirror | 6. Handle |
| 2. Telescope | 7. Sliding Limb |
| 3. Horizon Glass | 8. Reading Glass |
| 4. Shade Glasses | 9. Tangent Screw |
| 5. Back Shade Glasses | 10. Arc |
In getting angles of land-marks or buoys, the sextant is held by the handle No. 6 in a horizontal position. The vernier arrow in the sliding limb is set on zero. Now, suppose you wish to get the angular distance between two lighthouses as seen from the bridge of your ship. (Draw diagram.)

Look at one lighthouse through the line of sight and true horizon part of the horizon glass. Now, move the sliding limb along the arc gradually until you see the other lighthouse in the reflected horizon of the horizon glass. When one lighthouse in the true horizon is directly on top of the other lighthouse in the reflected horizon, clamp the sliding limb. If any additional adjustment must be made, make it with the tangent screw No. 9.
Now look through the reading glass No. 8. You should see that the arc is divided into degrees and sixths of degrees in the following manner:

Now, as every degree is divided into sixty minutes, one-sixth of a degree is 10 minutes. In other words, each of the divisions of a degree on this arc represents 10 minutes.
Now on the vernier in the sliding limb, directly under the arc, is the same kind of a


