قراءة كتاب Outlines of Dairy Bacteriology, 8th edition A Concise Manual for the Use of Students in Dairying
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

Outlines of Dairy Bacteriology, 8th edition A Concise Manual for the Use of Students in Dairying
although all the necessary ingredients may be present. Generally, bacteria prefer a neutral or slightly alkaline medium, rather than one of acid reaction; but there are numerous exceptions to this general rule, especially among the bacteria found in milk.
Temperature. Growth of bacteria can only occur within certain temperature limits, the extremes of which are designated as the minimum and maximum. Below and above these respective limits, life may be retained in the cell for a time, but actual cell-multiplication is stopped. Somewhere between these two cardinal temperature points, and generally nearer the maximum limit is the most favorable temperature for growth, known as the optimum. The temperature zone of most dairy bacteria in which growth occurs ranges from 40°-45° F. to somewhat above blood-heat, 105°-110° F., the optimum being from 80°-95° F. Many parasitic species, because of their adaptation to the bodies of warm-blooded animals, generally have a narrower range, and a higher optimum, usually approximating the blood heat (98°-99° F). The broader growth limits of bacteria in comparison with other kinds of life explain why these organisms are so widely distributed in nature.
Air supply. Most bacteria require as do the green plants and animal life, the free oxygen of the air for their respiration. These are called aerobic. Some species, however, and some yeasts as well possess the peculiar property of taking the oxygen which they need from organic compounds such as sugar, etc., and are therefore able to live and grow under conditions where the atmospheric air is excluded. These are known as anaerobic. While some species grow strictly under one condition or the other, and hence are obligate aerobes or anaerobes, others possess the ability of growing under either condition and are known as facultative or optional forms. The great majority of milk bacteria are either obligate or facultative aerobes.
Rate of growth. The rate of bacterial development is naturally very much affected by external conditions, food supply and temperature exerting the most influence. In the neighborhood of the freezing point but little growth occurs. The rate increases with a rise in temperature until at the optimum point, which is generally near the blood heat or slightly below (90°-98° F.), a single cell will form two cells in 20 to 30 minutes. If temperature rises much above blood heat rate of growth is lessened and finally ceases. Under ideal conditions, rapidity of growth is astounding, but this initially rapid rate of development cannot be maintained indefinitely, for growth is soon limited by the accumulation of by-products of cell activity. Thus, milk sours rapidly at ordinary temperatures until the accumulation of acid checks its development.
Detrimental effect of external conditions. Environmental influences of a detrimental character are constantly at work on bacteria, tending to repress their development or destroy them. These act much more readily on the vegetating cell than on the more resistant spore. A thorough knowledge of the effect of these antagonistic forces is essential, for it is often by their means that undesirable bacteria may be killed out.
Effect of cold. While it is true that chilling largely prevents fermentative action, and actual freezing stops all growth processes, still it does not follow that exposure to low temperatures will effectually destroy the vitality of bacteria, even in the vegetative condition. Numerous non-spore-bearing species remain alive in ice for a prolonged period, and recent experiments with liquid air show that even a temperature of -310° F. for hours does not effectually kill all exposed cells.
Effect of heat. High temperatures, on the other hand, will destroy any form of life, whether in the vegetative or latent stage. The temperature at which the vitality of the cell is lost is known as the thermal death point. This limit is not only dependent upon the nature of the organism, but varies with the time of exposure and the condition in which the heat is applied. In a moist atmosphere the penetrating power of heat is great; consequently cell-death occurs at a lower temperature than in a dry atmosphere. An increase in time of exposure lowers the temperature point at which death occurs.
For vegetating forms the thermal death point of most bacteria ranges from 130°-140° F. where the exposure is made for ten minutes which is the standard arbitrarily selected. In the spore stage resistance is greatly increased, some forms being able to withstand steam at 210°-212° F. from one to three hours. If dry heat is employed, 260°-300° F. for an hour is necessary to kill spores. Where steam is confined under pressure, a temperature of 230°-240° F. for 15-20 minutes suffices to kill all spores.
Drying. Spore-bearing bacteria like anthrax withstand drying with impunity; even tuberculous material, although not possessing spores retains its infectious properties for many months. Most of the dairy bacteria do not produce spores, and yet in a dry condition, they retain their vitality unimpaired for considerable periods, if they are not subjected to other detrimental influences.
Light. Bright sunlight exerts on many species a powerful disinfecting action, a few hours being sufficient to destroy all cells that are reached by the sun's rays. Even diffused light has a similar effect, although naturally less marked. The active rays in this disinfecting action are those of the chemical or violet end of the spectrum, and not the heat or red rays.
Influence of chemical substances. A great many chemical substances exert a more or less powerful toxic action of various kinds of life. Many of these are of great service in destroying or holding bacterial growth in check. Those that are toxic and result in the death of the cell are known as disinfectants; those that merely inhibit, or retard growth are known as antiseptics. All disinfectants must of necessity be antiseptic in their action, but not all antiseptics are disinfectants even when used in strong doses. Disinfectants have no place in dairy work, except to destroy disease bacteria, or preserve milk for analytical purposes. Corrosive sublimate or potassium bichromate are most frequently used for these purposes. The so-called chemical preservatives used to "keep" milk depend for their effect on the inhibition of bacterial growth. With a substance so violently toxic as formaldehyde (known as formalin, freezene) antiseptic doses are likely to be exceeded. In this country most states prohibit the use of these substances in milk. Their only function in the dairy should be to check fermentative or putrefactive processes outside of milk and so keep the air free from taints.
Products of growth. All bacteria in their development form certain more or less characteristic by-products. With most dairy bacteria, these products are formed from the decomposition of the medium in which the bacteria may happen to live. Such changes are known, collectively, as fermentations, and are characterised by the production of a large amount of by-products, as a result of the development of a relatively small amount of cell-life. The souring of milk, the formation of butyric acid, the making of vinegar from cider, are all examples of fermentative changes.
With many bacteria, especially those that affect proteid matter, foul-smelling gases are formed. These are known as putrefactive changes. All organic matter, under the action of various organisms, sooner or later undergoes decay, and in different stages of these processes, acids, alkalies, gases and numerous other products are formed. Many of these changes in organic matter occur