قراءة كتاب Pleasures of the telescope An Illustrated Guide for Amateur Astronomers and a Popular Description of the Chief Wonders of the Heavens for General Readers
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
Pleasures of the telescope An Illustrated Guide for Amateur Astronomers and a Popular Description of the Chief Wonders of the Heavens for General Readers
his name. And even after Chester More Hall in 1729, and John Dollond in 1757, had shown that chromatic aberration could be nearly eliminated by the combination of a flint-glass lens with one of crown glass, William Herschel, who began his observations in 1774, devoted his skill entirely to the making of reflectors, seeing no prospect of much advance in the power of refractors.
A refracting telescope which has been freed from the effects of chromatic aberration is called achromatic. The principle upon which its construction depends is that by combining lenses of different dispersive power the separation of the spectral colors in the image can be corrected while the convergence of the rays of light toward a focus is not destroyed. Flint glass effects a greater dispersion than crown glass nearly in the ratio of three to two. The chromatic combination consists of a convex lens of crown backed by a concave, or plano-concave, lens of flint. When these two lenses are made of focal lengths which are directly proportional to their dispersions, they give a practically colorless image at their common focus. The skill of the telescope-maker and the excellence of his work depend upon the selection of the glasses to be combined and his manipulation of the curves of the lenses.
Now, the reader may ask, "Since reflectors require no correction for color dispersion, while that correction is only approximately effected by the combination of two kinds of lenses and two kinds of glass in a refractor, why is not the reflector preferable to the refractor?"
The answer is, that the refractor gives more light and better definition. It is superior in the first respect because a lens transmits more light than a mirror reflects. Professor Young has remarked that about eighty-two per cent of the light reaches the eye in a good refractor, while "in a Newtonian reflector, in average condition, the percentage seldom exceeds fifty per cent, and more frequently is lower than higher." The superiority of the refractor in regard to definition arises from the fact that any distortion at the surface of a mirror affects the direction of a ray of light three times as much as the same distortion would do at the surface of a lens. And this applies equally both to permanent errors of curvature and to temporary distortions produced by strains and by inequality of temperature. The perfect achromatism of a reflector is, of course, a great advantage, but the chromatic aberration of refractors is now so well corrected that their inferiority in that respect may be disregarded. It must be admitted that reflectors are cheaper and easier to make, but, on the other hand, they require more care, and their mirrors frequently need resilvering, while an object glass with reasonable care never gets seriously out of order, and will last for many a lifetime.
Enough has now, perhaps, been said about the respective properties of object glasses and mirrors, but a word should be added concerning eyepieces. Without a good eyepiece the best telescope will not perform well. The simplest of all eyepieces is a single double-convex lens. With such a lens the magnifying power of the telescope is measured by the ratio of the focal length of the objective to that of the eye lens. Suppose the first is sixty inches and the latter half an inch; then the magnifying power will be a hundred and twenty diameters—i. e., the disk of a planet, for instance, will be enlarged a hundred and twenty times along each diameter, and its area will be enlarged the square of a hundred and twenty, or fourteen thousand four hundred times. But in reckoning magnifying power, diameter, not area, is always considered. For practical use an eyepiece composed of an ordinary single lens is seldom advantageous, because good definition can only be obtained in the center of the field. Lenses made according to special formulæ, however, and called solid eyepieces, give excellent results, and for high powers are often to be preferred to any other. The eyepieces usually furnished with telescopes are, in their essential principles, compound microscopes, and they are of two descriptions, "positive" and "negative." The former generally goes under the name of its inventor, Ramsden, and the latter is named after great Dutch astronomer, Huygens. The Huygens eyepiece consists of two plano-convex lenses whose focal lengths are in the ratio of three to one. The smaller lens is placed next to the eye. Both lenses have their convex surfaces toward the object glass, and their distance apart is equal to half the sum of their focal lengths. In this kind of eyepiece the image is formed between the two lenses, and if the work is properly done such an eyepiece is achromatic. It is therefore generally preferred for mere seeing purposes. In the Ramsden eyepiece two plano-convex lenses are also used, but they are of equal focal length, are placed at a distance apart equal to two thirds of the focal length of either, and have their convex sides facing one another. With such an eyepiece the image viewed is beyond the farther or field lens instead of between the two lenses, and as this fact renders it easier to adjust wires or lines for measuring purposes in the focus of the eyepiece, the Ramsden construction is used when a micrometer is to be employed. In order to ascertain the magnifying power which an eyepiece gives when applied to a telescope it is necessary to know the equivalent, or combined, focal length of the two lenses. Two simple rules, easily remembered, supply the means of ascertaining this. The equivalent focal length of a negative or Huygens eyepiece is equal to half the focal length of the larger or field lens. The equivalent focal length of a positive or Ramsden eyepiece is equal to three fourths of the focal length of either of the lenses. Having ascertained the equivalent focal length of the eyepiece, it is only necessary to divide it into the focal length of the object glass (or mirror) in order to know the magnifying power of your telescope when that particular eyepiece is in use.
A first-class object glass (or mirror) will bear a magnifying power of one hundred to the inch of aperture when the air is in good condition—that is, if you are looking at stars. If you are viewing the moon, or a planet, better results will always be obtained with lower powers—say fifty to the inch at the most. And under ordinary atmospheric conditions a power of from fifty to seventy-five to the inch is far better for stars than a higher power. With a five-inch telescope that would mean from two hundred and fifty to three hundred and seventy-five diameters, and such powers should only be applied for the sake of separating very close double stars. As a general rule, the lowest power that will distinctly show what you desire to see gives the best results. The experienced observer never uses as high powers as the beginner does. The number of eyepieces purchased with a telescope should never be less than three—a very low power—say ten to the inch; a very high power, seventy-five or one hundred to the inch, for occasional