You are here

قراءة كتاب Pleasures of the telescope An Illustrated Guide for Amateur Astronomers and a Popular Description of the Chief Wonders of the Heavens for General Readers

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Pleasures of the telescope
An Illustrated Guide for Amateur Astronomers and a Popular Description of the Chief Wonders of the Heavens for General Readers

Pleasures of the telescope An Illustrated Guide for Amateur Astronomers and a Popular Description of the Chief Wonders of the Heavens for General Readers

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 5

use; and a medium power—say forty to the inch—for general use. If you can afford it, get a full battery of eyepieces—six or eight, or a dozen—for experience shows that different objects require different powers in order to be best seen, and, moreover, a slight change of power is frequently a great relief to the eye.

There is one other thing of great importance to be considered in purchasing a telescope—the mounting. If your glass is not well mounted on a steady and easily managed stand, you might better have spent your money for something more useful. I have endured hours of torment while trying to see stars through a telescope that was shivering in the wind and dancing to every motion of the bystanders, to say nothing of the wriggling contortions caused by the application of my own fingers to the focusing screw. The best of all stands is a solid iron pillar firmly fastened into a brick or stone pier, sunk at least four feet in the ground, and surmounted by a well-made equatorial bearing whose polar axis has been carefully placed in the meridian. It can be readily protected from the weather by means of a wooden hood or a rubber sheet, while the tube of the telescope may be kept indoors, being carried out and placed on its bearing only when observations are to be made. With such a mounting you can laugh at the observatories with their cumbersome domes, for the best of all observatories is the open air. But if you dislike the labor of carrying and adjusting the tube every time it is used, and are both fond of and able to procure luxuries, then, after all, perhaps, you had better have the observatory, dome, draughts and all.

The next best thing in the way of a mounting is a portable tripod stand. This may be furnished either with an equatorial bearing for the telescope, or an altazimuth arrangement which permits both up-and-down and horizontal motions. The latter is cheaper than the equatorial and proportionately inferior in usefulness and convenience. The essential principle of the equatorial bearing is motion about two axes placed at right angles to one another. When the polar axis is in the meridian, and inclined at an angle equal to the latitude of the place, the telescope can be moved about the two axes in such a way as to point to any quarter of the sky, and the motion of a star, arising from the earthy rotation, can be followed hour after hour without disturbing the instrument. When thus mounted, the telescope may be driven by clockwork, or by hand with the aid of a screw geared to a handle carrying a universal joint.

The Star Image.

And now for testing the telescope. It has already been remarked that the excellence of a telescope depends upon the perfection of the image formed at the focus of the objective. In what follows I have only a refractor in mind, although the same principles would apply to a reflector. With a little practice anybody who has a correct eye can form a fair judgment of the excellence of a telescopic image. Suppose we have our telescope steadily mounted out of doors (if you value your peace of mind you will not try to use a telescope pointed out of a window, especially in winter), and suppose we begin our observations with the pole star, employing a magnifying power of sixty or seventy to the inch. Our first object is to see if the optician has given us a good glass. If the air is not reasonably steady we had better postpone our experiment to another night, because we shall find that the star as seen in the telescope flickers and "boils," and behaves in so extraordinary a fashion that there is no more definition in the image than there is steadiness in a bluebottle buzzing on a window pane. But if the night is a fine one the star image will be quiescent, and then we may note the following particulars: The real image is a minute bright disk, about one second of arc in diameter if we are using a four-and-a-half or five-inch telescope, and surrounded by one very thin ring of light, and the fragments, so to speak, of one or possibly two similar rings a little farther from the disk, and visible, perhaps, only by glimpses. These "diffraction rings" arise from the undulatory nature of light, and their distance apart as well as the diameter of the central disk depend upon the length of the waves of light. If the telescope is a really good one, and both object glass and eyepiece are properly adjusted, the disk will be perfectly round, slightly softer at the edge, but otherwise equally bright throughout; and the ring or rings surrounding it will be exactly concentric, and not brighter on one side than on another. Even if our telescope were only two inches or two inches and a half in aperture we should at once notice a little bluish star, the mere ghost of a star in a small telescope, hovering near the polar star. It is the celebrated "companion," but we shall see it again when we have more time to study it. Now let us put the star out of focus by turning the focusing screw. Suppose we turn it in such a way that the eyepiece moves slightly outside the focus, or away from the object glass. Very beautiful phenomena immediately begin to make their appearance. A slight motion outward causes the little disk to expand perceptibly, and just as this expansion commences, a bright-red point appears at the precise center of the disk. But, the outward motion continuing, this red center disappears, and is replaced by a blue center, which gradually expands into a sort of flare over the middle of the disk. The disk itself has in the mean time enlarged into a series of concentric bright rings, graduated in luminosity with beautiful precision from center toward circumference. The outermost ring is considerably brighter, however, than it would be if the same gradation applied to it as applies to the inner rings, and it is surrounded, moreover, on its outer edge by a slight flare which tends to increase its apparent width. Next let us return to the focus and then move the eyepiece gradually inside the focal point or plane. Once more the star disk expands into a series of circles, and, if we except the color phenomena noticed outside the focus, these circles are precisely like those seen before in arrangement, in size, and in brightness. If they were not the same, we should pronounce the telescope to be imperfect. There is one other difference, however, besides the absence of the blue central flare, and that is a faint reddish edging around the outer ring when the expansion inside the focus is not carried very far. Upon continuing to move the eyepiece inside or outside the focus we observe that the system of rings becomes larger, while the rings themselves rapidly increase in number, becoming at the same time individually thinner and fainter.

By studying the appearance of the star disk when in focus and of the rings when out of focus on either side, an experienced eye can readily detect any fault that a telescope may have. The amateur, of course, can only learn to do this by considerable practice. Any glaring and serious fault, however, will easily make itself manifest. Suppose, for example, we observe that the image of a star instead of being perfectly round is oblong, and that a similar defect appears in the form of the rings when the eyepiece is put out of focus. We know at once that something is wrong; but the trouble may lie either in the object glass, in the eyepiece, in the eye of the observer himself, or in the adjustment of the lenses in the tube. A careful examination of the image and the out-of-focus circles will enable us to determine with which of these sources of error we have to deal. If the star image when in focus has a sort of wing on one side,

Pages