قراءة كتاب On the Origin of Clockwork, Perpetual Motion Devices, and the Compass
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

On the Origin of Clockwork, Perpetual Motion Devices, and the Compass
means of a constant level tank and several channels.
There were many offshoots and developments of this main stem of Chinese horology. We are told, for example, that often mercury and occasionally sand were used to replace the water, which frequently froze in winter in spite of the application of lighted braziers to the interior of the machines. Then again, the astronomical models and the jackwork were themselves subject to gradual improvement: at the time of I-Hsing, for example, special attention was paid to the demarcation of ecliptic as well as the normal equatorial coordinates; this was clearly an influx from Hellenistic-Islamic astronomy, in which the relatively sophisticated planetary mathematics had forced this change not otherwise noted in China.
By the time of the Jesuits, this current of Chinese horology, long since utterly destroyed by the perils of wars, storms, and governmental reforms, had quite been forgotten. Matteo Ricci's clocks, those gifts that aroused so much more interest than European theological teachings, were obviously something quite new to the 16th-century Chinese scholars; so much so that they were dubbed with a quite new name, "self-sounding bells," a direct translation of the word "clock" (glokke). In view of the fact that the medieval Chinese escapement may have been the basis of European horology, it is a curious twist of fate that the high regard of the Chinese for European clocks should have prompted them to open their doors, previously so carefully and for so long kept closed against the foreign barbarians.

Mechanized Astronomical Models
Now that we have seen the manner in which mechanized astronomical models developed in China, we can detect a similar line running from Hellenistic time, through India and Islam to the medieval Europe that inherited their learning. There are many differences, notably because of the especial development of that peculiar characteristic of the West, mathematical astronomy, conditioned by the almost accidental conflux of Babylonian arithmetical methods with those of Greek geometry. However, the lines are surprisingly similar, with the exception only of the crucial invention of the escapement, a feature which seems to be replaced by the influx of ideas connected with perpetual motion wheels.
hellenistic period
Most interesting and frequently cited is the bronze planetarium said to have been made by Archimedes and described in a tantalisingly fragmentary fashion by Cicero and by later authors. Because of its importance as a prototype, we give the most relevant passages in full.11
Cicero's descriptions of Archimedes' planetarium are (italics supplied):
Gaius Sulpicius Gallus ... at a time when ... he happened to be at the house of Marcus Marcellus, his colleague in the consulship [166 B.C.], ordered the celestial globe to be brought out which the grandfather of Marcellus had carried off from Syracuse, when that very rich and beautiful city was taken [212 B.C.].... Though I had heard this globe (sphaerae) mentioned quite frequently on account of the fame of Archimedes, when I saw it I did not particularly admire it; for that other celestial globe, also constructed by Archimedes, which the same Marcellus placed in the temple of Virtue, is more beautiful as well as more widely known among the people. But when Gallus began to give a very learned explanation of the device, I concluded that the famous Sicilian had been endowed with greater genius than one would imagine possible for human being to possess. For Gallus told us that the other kind of celestial globe, which was solid and contained no hollow space, was a very early invention, the first one of that kind having been constructed by Thales of Miletus, and later marked by Eudoxus of Cnidus—a disciple of Plato, it was claimed—with constellations and stars which are fixed in the sky. He also said that many years later Aratus ... had described it in verse.... But this newer kind of globe, he said, on which were delineated the motions of the sun and moon and of those five stars which are called wanderers, or, as we might say, rovers [i. e., the five planets], contained more than could be shown on the solid globe, and the invention of Archimedes deserved special admiration because he had thought out a way to represent accurately by a single device for turning the globe, those various and divergent movements with their different rates of speed. And when Gallus moved [i.e., set in motion] the globe, it was actually true that the moon was always as many revolutions behind the sun on the bronze contrivance as would agree with the number of days it was behind in the sky. Thus the same eclipse of the sun happened on the globe as would actually happen, and the moon came to the point where the shadow of the earth was at the very time when the sun (appeared?) out of the region ... [several pages are missing in the manuscript; there is only one].
De republica, I, xiv (21-22), Keyes' translation.
When Archimedes put together in a globe the movements of the moon, sun and five wandering [planets], he brought about the same effect as that which the god of Plato did in the Timaeus when he made the world, so that one revolution produced dissimilar movements of delay and acceleration.
Tusculanae disputationes, I, 63.
Later descriptions from Ovid, Lactantius, Claudian, Sextus Empiricus, and Pappus, respectively, are (italics supplied):
There stands a globe suspended by a Syracusan's skill in an enclosed bronze [frame, or sphere—or perhaps, in enclosed air], a small image of the immense vault [of heaven]; and the earth is equally distant from the top and bottom; that is brought about by its [i. e., the outer bronze globe's] round form. The form of the temple [of Vesta] is similar....
Ovid, Fasti (1st century, A.D.), VI, 277-280, Frazer's translation.
The Sicilian Archimedes, was able to make a reproduction and model of the world in concave brass (concavo aere similitudinem mundi ac figuram); in it he so arranged the sun and moon and resembling the celestial revolutions (caelestibus similes conversionibus); and while it revolved it exhibited not only the accession and recession of the sun and the waxing and waning of the moon (incrementa deminutionesque lunae), but also the unequal courses of the stars, whether fixed or wandering.
Lactantius, Institutiones divinae (4th century, A.D.), II, 5, 18.
Archimedes' sphere. When Jove looked down and saw the heavens figured in a sphere of glass, he laughed and said to the other gods: "Has the power of mortal effort gone so far? Is my handiwork now mimicked in a fragile globe?" An old man of Syracuse had imitated on earth the laws of the heavens, the order of nature, and the ordinances of the gods. Some hidden influence within the sphere directs the various courses of the stars and actuates the lifelike mass