You are here
قراءة كتاب On the Origin of Clockwork, Perpetual Motion Devices, and the Compass
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

On the Origin of Clockwork, Perpetual Motion Devices, and the Compass
of planets moved either by hand or by automatic gearing, only in the important case of the sun was such a feature included of necessity. A model "sun" on a pin could be plugged in to any one of 360 holes drilled in at equal intervals along the band of the ecliptic. This pin could be moved each day so that the anaphoric clock kept step with the seasonal variation of the times of sunrise and sunset and the lengths of day and night.
The anaphoric clock is not only the origin of the astrolabe and of all later planetary models, it is also the first clock dial, setting a standard for "clockwise" rotation, and leaving its mark in the rotating dial and stationary pointer found on the earliest time-keeping clocks before the change was made to a fixed dial and moving hand.
We come finally to a piece of archaeological evidence that surpasses all else. Though badly preserved and little studied it might well be the most important classical object ever found; entailing a complete re-estimation of the technical prowess of the Hellenistic Greeks. In 1901 a sunken treasure ship was discovered lying off the island of Antikythera, between Greece and Crete.16 Many beautiful classical works of statuary were recovered from it, and these are now amongst the greatest treasures of the National Museum at Athens, Greece. Besides these obviously desirable art relics, there came to the surface some curious pieces of metal, accompanied by traces of what may have been a wooden casing. Two thousand years under the sea had reduced the metal to a mess of corroded fragments of plates, powdered verdigris, and still recognizable pieces of gear wheels.
If it were not for the established dates for other treasure from this ship, especially the minor objects found, and for traces of inscriptions on this metal device written in letters agreeing epigraphically with the other objects, one would have little doubt in supposing that such a complicated piece of machinery dated from the 18th century, at the earliest. As it is, estimates agree on ca. 65 B.C. ±10 years, and we can be sure that the machine is of Hellenistic origin, possibly from Rhodes or Cos.
The inscriptions, only partly legible, lead one to believe that we are dealing with an astronomical calculating mechanism of some sort. This is born out by the mechanical construction evident on the fragments. The largest one (fig. 6) contains a multiplicity of gearing involving an annular gear working epicyclic gearing on a turntable, a crown wheel, and at least four separate trains of smaller gears, as well as a 4-spoked driving wheel. One of the smaller fragments (fig. 7, bottom) contains a series of movable rings which may have served to carry movable scales on one of the three dials. The third fragment (fig. 7, top) has a pair of rings carefully engraved and graduated in degrees of the zodiac (this is, incidentally, the oldest engraved scale known, and micrometric measurements on photographs have indicated a maximum inaccuracy of about 1/2° in the 45° present).
Unfortunately, the very difficult task of cleaning the fragments is slow, and no publication has yet given sufficient detail for an adequate explanation of this object. One can only say that although the problems of restoration and mechanical analysis are peculiarly great, this must stand as the most important scientific artifact preserved from antiquity.
Some technical details can be gleaned however. The shape of the gear teeth appears to be almost exactly equilateral triangles in all cases (fig. 8), and square shanks may be seen at the centers of some of the wheels. No wheel is quite complete enough for a count of gear teeth, but a provisional reconstruction by Theophanidis (fig. 9) has shown that the appearances are consistent with the theory that the purpose of the gears was to provide the correct angular ratios to move the sun and planets at their appropriate relative speeds.