You are here

قراءة كتاب The Adductor Muscles of the Jaw In Some Primitive Reptiles

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
The Adductor Muscles of the Jaw In Some Primitive Reptiles

The Adductor Muscles of the Jaw In Some Primitive Reptiles

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 1


The Adductor Muscles of the Jaw
In Some Primitive Reptiles

BY

RICHARD C. FOX


University of Kansas
Lawrence
1964


University of Kansas Publications, Museum of Natural History

Editors: E. Raymond Hall, Chairman, Henry S. Fitch,
Theodore H. Eaton, Jr.


Volume 12, No. 15, pp. 657-680, 11 figs.
Published May 18, 1964


University of Kansas
Lawrence, Kansas


PRINTED BY
HARRY (BUD) TIMBERLAKE, STATE PRINTER
TOPEKA, KANSAS
1964

30-1522


The Adductor Muscles of the Jaw
In Some Primitive Reptiles

BY

RICHARD C. FOX

Information about osteological changes in the groups of reptiles that gave rise to mammals is preserved in the fossil record, but the musculature of these reptiles has been lost forever. Nevertheless, a reasonably accurate picture of the morphology and the spatial relationships of the muscles of many of these extinct vertebrates can be inferred by studying the scars or other marks delimiting the origins and insertions of muscles on the skeletons of the fossils and by studying the anatomy of Recent genera. A reconstruction built by these methods is largely speculative, especially when the fossil groups are far removed in time, kinship and morphology from Recent kinds, and when distortion, crushing, fragmentation and overzealous preparation have damaged the surfaces associated with the attachment of muscles. The frequent inadequacy of such direct evidence can be partially offset by considering the mechanical demands that groups of muscles must meet to perform a particular movement of a skeletal member.

Both direct anatomical evidence and inferred functional relations were used to satisfy the purposes of the study here reported on. The following account reports the results of my efforts to: 1, reconstruct the adductor muscles of the mandible in Captorhinus and Dimetrodon; 2, reconstruct the external adductors of the mandible in the cynodont Thrinaxodon; and 3, learn the causes of the appearance and continued expansion of the temporal fenestrae among the reptilian ancestors of mammals.

The osteology of these three genera is comparatively well-known. Although each of the genera is somewhat specialized, none seems to have departed radically from its relatives that comprised the line leading to mammals.

I thank Prof. Theodore H. Eaton, Jr., for suggesting the study here reported on, for his perceptive criticisms regarding it, and for his continued patience throughout my investigation. Financial assistance was furnished by his National Science Foundation Grant (NSF-G8624) for which I am also appreciative. I thank Dr. Rainer Zangerl, Chief Curator of Geology, Chicago Museum of Natural History, for permission to examine the specimens of Captorhinus and Dimetrodon in that institution. I am grateful to Mr. Robert F. Clarke, Assistant Professor of Biology, The Kansas State Teachers College, Emporia, Kansas, for the opportunity to study his specimens of Captorhinus from Richard's Spur, Oklahoma. Special acknowledgment is due Mr. Merton C. Bowman for his able preparation of the illustrations.

Captorhinus

The outlines of the skulls of Captorhinus differ considerably from those of the skulls of the primitive captorhinomorph Protorothyris. Watson (1954:335, Fig. 9) has shown that in the morphological sequence, Protorothyris—Romeria—Captorhinus, there has been flattening and rounding of the skull-roof and loss of the primitive "square-cut" appearance in transverse section. The quadrates in Captorhinus are farther from the midline than in Protorothyris, and the adductor chambers in Captorhinus are considerably wider than they were primitively. Additionally, the postorbital region of Captorhinus is relatively longer than that of Protorothyris, a specialization that has increased the length of the chambers within.

In contrast with these dimensional changes there has been little shift in the pattern of the dermal bones that roof the adductor chambers. The most conspicuous modification in Captorhinus is the absence of the tabular. This element in Protorothyris was limited to the occiput and rested without sutural attachment upon the squamosal (Watson, 1954:338); later loss of the tabular could have had no effect upon the origins of muscles from inside the skull roof. Changes in pattern that may have modified the origin of the adductors in Captorhinus were correlated with the increase in length of the parietals and the reduction of the supratemporals. Other changes that were related to the departure from the primitive romeriid condition of the adductors included the development of a coronoid process, the flattening of the quadrate-articular joint, and the development of the peculiar dentition of Captorhinus.

The adductor chambers of Captorhinus are large. They are covered dorsally and laterally by the parietal, squamosal, postfrontal, postorbital, quadratojugal and jugal bones. The chamber extends medially to the braincase, but is not limited anteriorly by a bony wall. The occiput provides the posterior limit. The greater part of the adductor chambers lies mediad of the mandibles and thus of the Meckelian fossae; consequently the muscles that arise from the dermal roof pass downward and outward to their insertion on the mandibular rami.

Mandible

The mandibular rami of Captorhinus are strongly constructed. Each ramus is slightly convex in lateral outline. Approximately the anterior half of each ramus lies beneath the tooth-row. This half is roughly wedge-shaped in its lateral aspect, reaching its greatest height beneath the short posterior teeth.

The posterior half of each ramus is not directly involved in supporting the teeth, but is associated with the adductor musculature and the articulation of the ramus with the quadrate. The ventral margin of this part of the ramus curves dorsally in a gentle arc that terminates posteriorly at the base of the retroarticular process. The dorsal margin in contrast sweeps sharply upward behind the teeth and continues posteriorly in a long, low, truncated coronoid process.

A prominent coronoid process is not found among the more primitive members of the suborder, such as Limnoscelis, although the mandible commonly curves upward behind the tooth-row in that genus. This area in Limnoscelis is overlapped by the cheek when the jaw is fully adducted (Romer, 1956:494, Fig. 213), thereby foreshadowing the more extreme condition in Captorhinus.

The coronoid process in Captorhinus is not oriented vertically, but slopes inward toward the midline at approximately 45 degrees, effectively roofing the Meckelian fossa and limiting its opening to the median surface of each ramus. When the jaw was adducted, the coronoid process moved upward and inside the cheek. A space persisted between the process and the cheek because the process sloped obliquely away from the cheek and toward the midline of the skull. The external surface of the process presented an area of attachment for muscles arising from the apposing internal surface of the cheek.

Palate

The palate of Captorhinus is of the generalized rhynchocephalian type (Romer, 1956:71).

Pages