قراءة كتاب The Thirst Quenchers

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
The Thirst Quenchers

The Thirst Quenchers

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 1


THE THIRST QUENCHERS

 

Earth has more water surface than land surface—but that does not mean we have all the water we want to drink. And right now, America is already pressing the limits of fresh water supply....

 

BY RICK RAPHAEL

 

ILLUSTRATED BY GEORGE SCHELLING


"You know the one thing I really like about working for DivAg?" Troy Braden muttered into his face-mask pickup.

Ten yards behind Troy, and following in his ski tracks, his partner Alec Patterson paused to duck under a snow-laden spruce bough before answering. It was snowing heavily, a cold, dry crystal snow, piling up inch upon inch on the already deep snow pack of the Sawtooth Mountain range. In another ten minutes they would be above the timberline and the full force of the storm would hit them.

"Tell me, Mr. Bones," he asked as he poled easily in Troy's tracks, "what is the one thing you really like about working for the Division of Agriculture?"

Troy tracked around a trough of bitterbrush that bent and fought against the deep snow. "It's so dependable," he said, "so reliable, so unchanging. In nearly two centuries, the world has left behind the steel age; has advanced to nucleonics, tissue regeneration, autoservice bars and electronically driven yo-yos. Everyone in the world except the United States Division of Agriculture. The tried and true method is the rock up on which our integrity stands—even though it was tried more than a hundred years ago."

He dropped out of sight over a small hummock and whipped down the side of a slight depression in the slope, his skis whispering over the dry snow and sending up a churning crest of white from their tips.

Alec chuckled and poled after him into the basin. The two young junior hydrologists worked their way up the opposite slope and then again took the long, slow traverse-and-turn, traverse-and-turn path through the thinning trees and out into the open wind-driven snow field above them.

Just below the ridgeline, a shelf of packed snow jutted out for a dozen yards, flat and shielded from the wind by a brief rock face. Troy halted in the small island in the storm and waited for Alec to reach him.

He fumbled with mittened fist at the cover of the directional radiation compass strapped to his left wrist. The outer dial rotated as soon as the cover lock was released and came to a stop pointing to magnetic north. The detector needle quartered across the northeast quadrant of the dial like a hunting dog and then came to rest at nineteen degrees, just slightly to the left of the direction of their tracks. An inner dial needle quivered between the yellow and red face of the intensity meter.

"We should be within a couple of hundred yards of the marker now," Troy announced as his short, chunky partner checked alongside. Alec nodded and peered through the curtain of sky-darkened snow just beyond the rock face. He could see powder spume whipping off the ridge crest twenty feet above them but the contour of the sloping ridge was quickly lost in the falling snow.

The hydrologists leaned on their ski poles and rested for a few minutes before tackling the final cold leg of their climb. Each carried a light, cold-resistance plastic ruckpac slung over their chemically-heated light-weight ski suits.

A mile and a half below in the dense timber, their two Sno cars were parked in the shelter of a flattened and fallen spruce and they had thrown up a quick lean-to of broken boughs to give the vehicles even more protection from the storm. From there to the top, Troy was right in his analysis of DivAg. When God made mountain slopes too steep and timber too thick, it was a man and not a machine that had to do the job on skis; just as snow surveyors had done a century before when the old Soil Conservation Service pioneered the new science of snow hydrology.

The science had come a long way in the century from the days when teams of surveyors poked a hollow, calibrated aluminum tube into the snow pack and then read depth and weighed both tube and contents to determine moisture factors.

Those old-timers fought blizzards and avalanches from November through March in the bleak, towering peaks of the Northwest to the weathered crags of the Appalachians, measuring thousands of predesignated snow courses the last week of each winter month. Upon those readings had been based the crude, wide-margin streamflow forecasts for the coming year.

Now, a score of refined instruments did the same job automatically at hundreds of thousands of almost-inaccessible locations throughout the northern hemisphere. Or at least, almost automatically. Twenty feet above the two DivAg hydrologists and less than a hundred yards east, on the very crest of an unnamed peak in the wilderness of Idaho's Sawtooth Mountains, radiation snow gauge P11902-87 had quit sending data three days ago.

The snow-profile flight over the area showed a gap in the graphed line that flowed over the topographical map of the Sawtooths as the survey plane flew its daily scan. The hydrotech monitoring the graph reported the lapse to regional headquarters at Spokane and minutes later, a communications operator punched up the alternate transmitter for P11902-87. Nothing happened although the board showed the gauge's cobalt-60 beta and gamma still hot. Something had gone wrong with the tiny transducer transmitter. A man, or to be more precise, two men, had to replace the faulty device.

The two men and the replacement gauge, trudged out again into the face of the rising storm.

Troy and Alec pushed diagonally up the snow slope, pausing every few minutes to take new directional readings. The needles were now at right angles to them and reading well into the "hot" red division of the intensity meter. They still were ten feet below the crest and a cornice of snow hung out in a slight roof ahead of them. Both men had closed the face hatches of their insulated helmets and tiny circulators automatically went to work drawing off moisture and condensation from the treated plastic.

"Wonder if that chunk is going to stay put while we go past," Alec called, eyeing the heavy overhang. Troy paused and the two carefully looked over the snow roof and the slope that fell away sharply to their right.

"Looks like it avalanched once before," Troy commented. "Shall we operate, Dr. Patterson?"

"Better extravagant with the taxpayers' money than sorry for ourselves," Alec replied, pulling the avalanche gun from his holster. It looked like an early-day Very pistol, with its big, straight-bore muzzle. "Let's get back a couple of feet."

They kick-turned and skied back from the sides of the cornice. Alec raised the gun and aimed at the center of the deepest segment over the overhang. The gun discharged with a muffled "pop" and the concentrated ball of plastic explosive arced through the air, visible to the naked eye. It vanished into the snow roof and the men waited. Ten seconds later there was a geyser of flame and the smoke and snow as the charge detonated deep under the overhang. The wind whipped the cloud away and the roof still held, despite the gaping hole.

"What do you think?" Troy asked.

"One more for good measure," Alec said as he fired again, this time to the right of the first shot. The plastic detonated in another geyser of smoke and snow, but the small cloud was instantly lost as the entire overhang broke and fell the ten to twelve feet from the crest to the face of the slope and then boiled and rolled, gathering more snow and greater mass and impetus as it thundered down the slope and was lost in the storm. The dense clouds of loose powder snow raised by the avalanche whipped away in the clutches of the wind.

"Well done, Dr.

Pages