قراءة كتاب Elevator Systems of the Eiffel Tower, 1889
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
rope
was replaced by a lever.
(Courtesy of Otis Elevator Company.)
In addition to the element of potential danger from careless operation or failure of the brake, the Baldwin system was extremely expensive to install as a result of the second shaft, which of course was required to be more or less watertight.
Much of the water-balance elevator’s development and refinement was done by William E. Hale of Chicago, who also made most of the installations. The system has, therefore, come to bear his name more commonly than Baldwin’s.
The popularity of the water-balance system waned after only a few years, being eclipsed by more rational systems. Hale eventually abandoned it and became the western agent for Otis—by this time prominent in the field—and subsequently was influential in development of the hydraulic elevator.
The rope-geared system of hydraulic elevator operation was so basically simple that by 1880 it had been embraced by virtually all manufacturers. However, for years most builders continued to maintain a line of steam and belt driven machines for freight service. Inspired by the rapid increase of taller and taller buildings, there was a concentrated effort, heightened by severe competition, to refine the basic system.
By the late 1880’s a vast number of improvements in detail had appeared, and this form of elevator was considered to be almost without defect. It was safe. Absence of a drum enabled the car to be carried by a number of cables rather than by one or two, and rendered overtravel impossible. It was fast. Control devices had received probably the most attention by engineers and were as perfect and sensitive as was possible with mechanical means. Cars with lever control could be run at the high speeds required for high buildings, yet they could be stopped with a smoothness and precision unattainable earlier with systems in which the valves were controlled by an endless rope, worked by the operator. It was almost completely silent, and when the cylinder was placed vertically in a well near the shaft, practically no valuable floor space was occupied. But most important, the length of rise was unlimited because no drum was used. As greater rises were required, the multiplication of the ropes and sheaves was simply increased, raising the piston-car travel ratio and permitting the cylinder to remain of manageable length. The ratio was often as high as 10 or 12 to 1, the car moving 10 or 12 feet to the piston’s 1.
In addition to its principal advantages, the hydraulic elevator could be operated directly from municipal water mains in the many cities where there was sufficient pressure, thus eliminating a large investment in tanks, pumps and boilers (fig. 14).
By far the greatest development in this specialized branch of mechanical engineering occurred in the United States. The comparative position of American practice, which will be demonstrated farther on, is indicated by the fact that Otis Brothers and other large elevator concerns in the United States were able to establish offices in many of the major cities of Europe and compete very successfully with local firms in spite of the higher costs due to shipment. This also demonstrates the extent of error in the oft-heard statement that the skyscraper was the direct result of the elevator’s invention. There is no question that continued elevator improvement was an essential factor in the rapid increase of building heights. However, consideration of the situation in European cities, where buildings of over 10 stories were (and still are) rare in spite of the availability of similar elevator techniques, points to the fundamental matter of tradition. The European city simply did not develop with the lack of judicial restraint which characterized metropolitan growth in the United States. The American tendency to confine mercantile activity to the smallest possible area resulted in excessive land values, which drove buildings skyward. The elevator followed, or, at most, kept pace with, the development of higher buildings.

Figure 14.—In the various hydraulic systems, a pump was required if
pressure from water mains was insufficient to operate the elevator directly.
There was either a gravity tank on the roof or a pressure tank in the basement.
(From Thomas E. Brown, Jr., “The American Passenger Elevator,”
Engineering Magazine (New York), June 1893, vol. 5, p. 340.)
European elevator development—notwithstanding the number of American rope-geared hydraulic machines sold in Europe in the 10 years or so preceding the Paris fair of 1889—was confined mainly to variations on the direct plunger type, which was first used in English factories in the 1830’s. The plunger elevator (fig. 16), an even closer derivative of the hydraulic press than Armstrong’s crane, was nothing more than a platform on the upper end of a vertical plunger that rose from a cylinder as water was forced in.
There were two reasons for this European practice. The first and most apparent was the rarity of tall buildings. The drilling of a well to receive the cylinder was thus a matter of little difficulty. This well had to be equivalent in depth to the elevator rise. The second reason was an innate European distrust of cable-hung elevator systems in any form, an attitude that will be discussed more fully farther on.
THE ELECTRIC ELEVATOR
At the time the Eiffel Tower elevators were under consideration, water under pressure was, from a practical standpoint, the only agent capable of fulfilling the power and control requirements of this particularly severe service. Steam, as previously mentioned, had already been found wanting in several respects. Electricity, on the other hand, seemed to hold promise for almost every field of human endeavor. By 1888 the electric motor had behind it a 10- or 15-year history of active development. Frank J. Sprague had already placed in successful operation a sizable electric trolley-car system, and was manufacturing motors of up to 20 horsepower in commercial quantity. Lighting generators were being produced in sizes far greater. There were, nevertheless, many obstacles preventing the translation of this progress into machinery capable of hauling large groups of people a vertical distance of 1,000 feet with unquestionable dependability.
The first application of electricity to elevator propulsion was an experiment of the distinguished German electrician Werner von Siemens, who, in 1880, constructed a car that successfully climbed a rack by means of a motor and worm gearing beneath its deck (figs. 17, 18)—again, the characteristic European distrust of cable suspension. However, the effect of this success on subsequent development was negligible. Significant use of electricity in this field occurred somewhat later, and in a manner parallel to that by which steam was first applied to the elevator—the driving of mechanical (belt driven) elevator machines by individual motors. Slightly later came another application of the