قراءة كتاب Elevator Systems of the Eiffel Tower, 1889

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Elevator Systems of the Eiffel Tower, 1889

Elevator Systems of the Eiffel Tower, 1889

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 2

investigations of tall metallic piers based upon its recent experiences with several lofty railway viaducts and bridges. The most spectacular of these was the famous Garabit Viaduct (1880-1884), which carries a railroad some 400 feet above the valley of the Truyere in southern France. While the 200-foot height of the viaduct’s two greatest piers was not startling even at that period, the studies proved that piers of far greater height were entirely feasible in iron construction. This led to the design of a 395-foot pier, which, although never incorporated into a bridge, may be said to have been the direct basis for the Eiffel Tower.

Preliminary studies for a 300-meter tower were made with the 1889 fair immediately in mind. With an assurance born of positive knowledge, Eiffel in June of 1886 approached the Exposition commissioners with the project. There can be no doubt that only the singular respect with which Eiffel was regarded not only by his profession but by the entire nation motivated the Commission to approve a plan which, in the hands of a figure of less stature, would have been considered grossly impractical.

Between this time and commencement of the Tower’s construction at the end of January 1887, there arose one of the most persistently annoying of the numerous difficulties, both structural and social, which confronted Eiffel as the project advanced. In the wake of the initial enthusiasm—on the part of the fair’s Commission inspired by the desire to create a monument to French technological achievement, and on the part of the majority of Frenchmen by the stirring of their imagination at the magnitude of the structure—there grew a rising movement of disfavor. The nucleus was, not surprisingly, formed mainly of the intelligentsia, but objections were made by prominent Frenchmen in all walks of life. The most interesting point to be noted in a retrospection of this often violent opposition was that, although the Tower’s every aspect was attacked, there was remarkably little criticism of its structural feasibility, either by the engineering profession or, as seems traditionally to be the case with bold and unprecedented undertakings, by large numbers of the technically uninformed laity. True, there was an undercurrent of what might be characterized as unease by many property owners in the structure’s shadow, but the most obstinate element of resistance was that which deplored the Tower as a mechanistic intrusion upon the architectural and natural beauties of Paris. This resistance voiced its fury in a flood of special newspaper editions, petitions, and manifestos signed by such lights of the fine and literary arts as De Maupassant, Gounod, Dumas fils, and others. The eloquence of one article, which appeared in several Paris papers in February 1887, was typical:

We protest in the name of French taste and the national art culture against the erection of a staggering Tower, like a gigantic kitchen chimney dominating Paris, eclipsing by its barbarous mass Notre Dame, the Sainte-Chapelle, the tower of St. Jacques, the Dôme des Invalides, the Arc de Triomphe, humiliating these monuments by an act of madness.[1]

Further, a prediction was made that the entire city would become dishonored by the odious shadow of the odious column of bolted sheet iron.

It is impossible to determine what influence these outcries might have had on the project had they been organized sooner. But inasmuch as the Commission had, in November 1886, provided 1,500,000 francs for its commencement, the work had been fairly launched by the time the protestations became loud enough to threaten and they were ineffectual.

Upon completion, many of the most vigorous protestants became as vigorous in their praise of the Tower, but a hard core of critics continued for several years to circulate petitions advocating its demolition by the government. One of these critics, it was said—probably apocryphally—took an office on the first platform, that being the only place in Paris from which the Tower could not be seen.

 

 

Figure 3.—Trevithick’s proposed cast-iron tower (1832)
would have been 1,000 feet high, 100 feet in diameter at the base,
12 feet at the top, and surmounted by a colossal statue.
(From F. Dye, Popular Engineering, London, 1895, p. 205.)

 

 


The Tower’s Structural Rationale

During the previously mentioned studies of high piers undertaken by the Eiffel firm, it was established that as the base width of these piers increased in proportion to their height, the diagonal bracing connecting the vertical members, necessary for rigidity, became so long as to be subject to high flexural stresses from wind and columnar loading. To resist these stresses, the bracing required extremely large sections which greatly increased the surface of the structure exposed to the wind, and was, moreover, decidedly uneconomical. To overcome this difficulty, the principle which became the basic design concept of the Tower was developed.

The material which would otherwise have been used for the continuous lattice of diagonal bracing was concentrated in the four corner columns of the Tower, and these verticals were connected only at two widely separated points by the deep bands of trussing which formed the first and second platforms. A slight curvature inward was given to the main piers to further widen the base and increase the stability of the structure. At a point slightly above the second platform, the four members converged to the extent that conventional bracing became more economical, and they were joined.

 

 

Figure 4.—The proposed 1,000-foot iron tower designed by
Clarke, Reeves & Co. for the Centennial Exhibition of 1876 at Philadelphia.
(From Scientific American, Jan. 24, 1874, vol. 30, p. 47.)

 

 

That this theory was successful not only practically, but visually, is evident from the resulting work. The curve of the legs and the openings beneath the two lower platforms are primarily responsible for the Tower’s graceful beauty as well as for its structural soundness.

The design of the Tower was not actually the work of Eiffel himself but of two of his chief engineers, Emile Nouguier (1840-?) and Maurice Kœchlin (1856-1946)—the men who had conducted the high pier studies—and the architect Stéphen Sauvestre (1847-?).

In the planning of the foundations, extreme care was used to ensure adequate footing, but in spite of the Tower’s light weight in proportion to its bulk, and the low earth pressure it exerted, uneven pier settlement with resultant leaning of the Tower was considered a dangerous possibility.[2] To compensate for this eventuality, a device was used whose ingenious directness justifies a brief description. In the base of each of the 16 columns forming the four main legs was incorporated an opening into which an 800-ton hydraulic press could be placed, capable of raising the member slightly. A thin steel shim could then be inserted to make the necessary

Pages