You are here

قراءة كتاب Outlines of dairy bacteriology A concise manual for the use of students in dairying

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Outlines of dairy bacteriology
A concise manual for the use of students in dairying

Outlines of dairy bacteriology A concise manual for the use of students in dairying

تقييمك:
0
No votes yet
دار النشر: Project Gutenberg
الصفحة رقم: 3

growth. When there is an abundant supply of food and when the temperature conditions are favorable, the bacteria increase in numbers with astounding rapidity. It has been determined by actual experiment that the process of cell division under favorable conditions takes place in a few moments. Barber has shown that one of the forms of bacteria constantly found in milk will divide in 17 minutes at 98° F. and that a single organism kept at this temperature for ten hours would increase to 1,240,000,000. If the temperature is reduced to 50° F., the time required for division is increased to several hours. The explanation for the rapid spoiling of milk that is not well cooled is thus apparent. The initial rapid rate of increase cannot be maintained for any length of time as the conditions become more and more unfavorable as growth continues, due to the accumulation of the by-products of the cell activity. Thus, the growth of acid-forming organisms in milk becomes checked by the formation of acid from the fermentation of the sugar.

Detrimental effect of external conditions. Environmental conditions of a detrimental character are constantly at work tending to repress the activity of bacteria or to destroy them. These act more readily on the vegetating cells than on the more resistant spores. It is of the utmost importance that those engaged in dairy work be familiar with these antagonistic forces since it is constantly necessary to repress or to kill outright the bacteria in milk and other dairy products. In many lines of dairy work it is likewise important to be familiar with the conditions favorable for bacterial growth.

Effect of cold. While it is true that chilling largely prevents fermentative action, and actual freezing stops all growth processes, still it does not follow that exposure to low temperatures will effectually destroy the vitality of bacteria, even in the growing condition. Numerous non-spore-bearing species remain alive in ice for a prolonged period, and experiments with liquid air show that even a temperature of-310° F. maintained for hours does not kill all exposed cells.

Effect of heat. High temperatures, on the other hand, will destroy any form of life, whether in the vegetative or latent spore stage. The temperature at which the vitality of the cell is lost is known as the thermal death point. This limit is dependent not only upon the nature of the organism, but upon the time of exposure and the condition in which the heat is applied. In a moist atmosphere, the penetrating power of heat is great, consequently cell death occurs at a lower temperature than in a dry atmosphere. An increase in time of exposure lowers the temperature point at which death occurs.

For growing organisms, the thermal death point of most species ranges from 130° to 140° F. for ten minutes. When spores are present, resistance is greatly increased, some forms being able to withstand steam at 212° F. from one to three hours. In the sterilization of milk, it is often necessary to heat for several hours, where a single exposure is made, to destroy the resistant spores, that seem to be more abundant under summer than winter conditions. Steam under pressure is a much more effective agent, as the temperature is thus raised considerably beyond 212° F. An exposure of twenty minutes, at a temperature of 230° to 240° F. will kill all spores. Where heat is used in a dry state, it is much less effective, a baking temperature of 260° to 300° F. for an hour being necessary to kill spores. This condition is of the utmost importance in the destruction of bacteria in the dairy and creamery.

Effect of drying. The spore-bearing bacteria withstand effects of desiccation without serious injury, and many of the non-spore-producing types retain their vitality for some months. The bacteria found in the air are practically all derived from the soil, and exist in the air in a dried condition, in which they are able to remain alive for considerable periods of time. In a dried condition, active cell growth is not possible, but when other conditions, such as moisture and food supply are present, resumption of growth quickly begins. This property is also of importance in the dairy as in the preparation of dry starters for creameries and cheese factories.

Effect of light. Bright sunlight exerts a markedly injurious effect on bacterial life, both in a spore and in a growing condition. Where the direct sunlight strikes, more or less complete disinfection results in the course of a few hours, the effect being produced by the chemical or violet rays, and not by the heat or red rays of the spectrum. This action, however, does not penetrate opaque objects, and is therefore confined to the surface. In diffused light, the effect is much lessened, although it is exerted to some extent. Sunlight exerts a beneficial effect on the general health and well-being of animal life, and is a matter of importance to be taken into consideration in the erection of buildings for animals as well as for people.

Effect of chemicals. A great many chemical substances exert a more or less powerful toxic action on various kinds of life. Many of these are of great service in destroying bacteria or holding them in check. Those that are toxic and result in the death of the cell are known as disinfectants; those that merely inhibit, or retard growth are known as antiseptics. All disinfectants must of necessity be antiseptic in their action, but not all antiseptics are disinfectants, even when used in large amounts. Disinfectants have no place in dairy work, except to destroy disease-producing bacteria, or to preserve milk for analytical purposes. The so-called chemical preservatives used to "keep" milk depend for their effect on the inhibition of bacterial growth. In this country, most states prohibit the use of these substances in milk. Their only function in the dairy should be to check fermentative and putrefactive processes outside of milk and so keep the air free from taints.

Products of growth. All bacteria, as a result of their growth in food substances, form more or less characteristic compounds that are known as by-products. The changes brought about are those of decomposition and are collectively known as fermentations; they are characterized by the production of a large amount of by-products as the result of the development of a relatively small amount of cell life. The souring of milk, the rotting of eggs, the spoiling of meats, the making of vinegar from cider are examples of fermentations caused by different bacteria.

If the substances decomposed contain but little sugar, as do animal tissues, the conditions are favorable for the growth of the putrefactive bacteria, and foul-smelling gases are formed. When sugars are present, as in milk, the environmental conditions are most favorable for the acid-forming bacteria that do not as a rule produce offensive odors.

Many of the bacteria form substances known as enzymes which are able to produce certain decomposition changes in the absence of the living cells, and it is by virtue of these enzymes that the organisms are able to break down such enormous quantities of organic matter. Most of these enzymes react toward heat, cold, and chemical poisons in a manner quite similar to the living cells. In one respect, they are readily differentiated, and that is, that practically all of them are capable of producing their characteristic chemical transformations under conditions where the activity of the cell is wholly suspended as in a saturated ether or chloroform atmosphere. The production of enzymes is not confined to bacteria, but they are found throughout the animal and plant world, especially

Pages