You are here

قراءة كتاب The Introduction of Self-Registering Meteorological Instruments

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
The Introduction of Self-Registering Meteorological Instruments

The Introduction of Self-Registering Meteorological Instruments

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 2

id="FNanchor_3_3"/>[3]

Other questions of a quasi-meteorological nature interested the scientists of this period, and brought other instruments into use. Observations of rainfall and evaporation were made in pursuit of the ancient question of the sources of terrestrial water, the maintenance of the levels of seas, etc. Physicians brought instruments to bear on the question of the relationship between weather and the incidence of disease. The interrelationship between these various meteorological enterprises was not long in becoming apparent. Soon after its founding in 1657 the Florentine academy undertook, through the distribution of thermometers, barometers, hygrometers, and rain gauges, the establishment of an international network of meteorological observation stations, a network which did not survive the demise of the Accademia itself ten years later.

Not for over a century was the first thoroughgoing attempt made at systematic observation. There was a meteorological section in the Academy of Sciences at Mannheim from 1763, and subsequently a separate society for meteorology. In 1783, the Academy published observations from 39 stations, those from the central station comprising data from the hygrometer, wind vane (but not anemometer), rain gauge, evaporimeter, and apparatus for geomagnetism and atmospheric electricity, as well as data from the thermometer and barometer. The Mannheim system was also short-lived, being terminated by the Napoleonic invasion, but systems of comparable scope were attempted throughout Europe and America during the next generation.

In the United States the office of the Surgeon General, U. S. Army, began the first systematic observation in 1819, using only the thermometer and wind vane, to which were added the barometer and hygrometer in 1840-1841 and the wind force anemometer, rain gauge, and wet bulb thermometer in 1843. State weather observation systems meanwhile had been inaugurated in New York (1825), Pennsylvania (1836), and Ohio (1842).[4]

Nearly 200 years of observation had not, however, noticeably improved the weather, and the naive faith in the power of instruments to reveal its mysteries, which had possessed many an early meteorologist, no longer charmed the scientist of the early 19th century. In the first published report of the British Association for the Advancement of Science in 1833, J. D. Forbes called for a reorganization of procedures:

In the science of Astronomy, for example, as in that of Optics, the great general truths which emerge in the progress of discovery, though depending for their establishment upon a multitude of independent facts and observations, possess sufficient unity to connect in the mind the bearing of the whole; and the more perfectly understood connexion of parts invites to further generalization.

Very different is the position of an infant science like Meteorology. The unity of the whole ... is not always kept in view, even as far as our present very limited general conceptions will admit of: and as few persons have devoted their whole attention to this science alone ... no wonder that we find strewed over its irregular and far-spread surface, patches of cultivation upon spots chosen without discrimination and treated on no common principle, which defy the improver to inclose, and the surveyor to estimate and connect them. Meteorological instruments have been for the most part treated like toys, and much time and labor have been lost in making and recording observations utterly useless for any scientific purpose. Even the numerous registers of a rather superior class ... hardly contain one jot of information ready for incorporation in a Report on the progress of Meteorology....

The most general mistake probably consists in the idea that Meteorology, as a science, has no other object but an experimental acquaintance with the condition of those variable elements which from day to day constitute the general and vague result of the state of the weather at any given spot; not considering that ... when grouped together with others of the same character, [they] may afford the most valuable aid to scientific generalization.[5]

Forbes goes on to call for a greater emphasis on theory, and the replacement of the many small-scale observatories with "a few great Registers" to be adequately maintained by "great Societies" or by the government. He suggests that the time for pursuit of theory might be gained from "the vague mechanical task to which at present they generally devote their time, namely the search for great numerical accuracy, to a superfluity of decimal places exceeding the compass of the instrument to verify."

From its founding the British Association sponsored systematic observation at various places. In 1842 it initiated observations at the Kew Observatory, which has continued until today to be the premier meteorological observatory in the British Empire. The American scientist Joseph Henry observed the functioning of an observatory maintained by the British Association at Plymouth in 1837, and when he became Secretary of the new Smithsonian Institution a few years later he made the furtherance of meteorology one of its first objectives.

The Kew Observatory set a pattern for systematic observation in England as, from 1855, did the Smithsonian Institution in the United States. The instruments used differed little from those in use at Mannheim over half a century earlier[6] (fig. 1). They were undoubtedly more accurate, but this should not be overstressed. Forbes had noted in his report of 1832 that some scientists were then calling for a return to Torricelli, for the construction of a temporary barometer on the site in preference to reliance on the then existing manufactured instruments.

The First Self-Registering Instruments

From the middle of the 17th century meteorological observations were recorded in manuscript books known as "registers," many of which were published in the early scientific journals. The most effective utilization of these observations was in the compilation of the history of particular storms, but where a larger synthesis was concerned they tended, as Forbes has shown, to show themselves unsystematic and non-comparable. The principal problems of meteorological observation have been from the outset the construction of precisely comparable instruments and their use to produce comparable records. The former problem has been frequently discussed, and perhaps, as Forbes suggests, overemphasized. It is the latter problem with which we are here concerned.

The idea of mechanizing the process of observation, not yet accomplished in Forbes' time, had been put forward within a little over a decade of the first use of the thermometer and barometer in meteorology. On December 9, 1663, Christopher Wren presented the Royal Society with a design for a "weather clock," of which a drawing is extant.[7] This drawing (fig. 2) shows an ordinary clock to which is attached a pencil-carrying rack,

Pages