You are here
قراءة كتاب Encyclopaedia Britannica, 11th Edition, "Calhoun" to "Camoens" Volume 5, Slice 1
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

Encyclopaedia Britannica, 11th Edition, "Calhoun" to "Camoens" Volume 5, Slice 1
By quickly reversing the thermometer the bubble passes to the neck of the bulb. If the instrument is again inverted and tapped, the thread will probably break off at the neck of the bulb, which should be previously cooled or warmed so as to obtain in this manner, if possible, a thread of the desired length. If the thread so obtained is too long or not accurate enough, it is removed to the other end of the tube, and the bulb further warmed till the mercury reaches some easily recognized division. At this point the broken thread is rejoined to the mercury column from the bulb, and a microscopic bubble of gas is condensed which generally suffices to determine the subsequent breaking of the mercury column at the same point of the tube. The bulb is then allowed to cool till the length of the thread above the point of separation is equal to the desired length, when a slight tap suffices to separate the thread. This method is difficult to work with short threads owing to deficient inertia, especially if the tube is very perfectly evacuated. A thread can always be separated by local heating with a small flame, but this is dangerous to the thermometer, it is difficult to adjust the thread exactly to the required length, and the mercury does not run easily past a point of the tube which has been locally heated in this manner.
Having separated a thread of the required length, the thermometer is mounted in a horizontal position on a suitable support, preferably with a screw adjustment in the direction of its length. By tilting or tapping the instrument the thread is brought into position corresponding to the steps of the calibration successively, and its length in each position is carefully observed with a pair of reading microscopes fixed at a suitable distance apart. Assuming that the temperature remains constant, the variations of length of the thread are inversely as the variations of cross-section of the tube. If the length of the thread is very nearly equal to one step, and if the tube is nearly uniform, the average of the observed lengths of the thread, taking all the steps throughout the interval, is equal to the length which the thread should have occupied in each position had the bore been uniform throughout and all the divisions equal. The error of each step is therefore found by subtracting the average length from the observed length in each position. Assuming that the ends of the interval itself are correct, the correction to be applied at any point of calibration to reduce the readings to a uniform tube and scale, is found by taking the sum of the errors of the steps up to the point considered with the sign reversed.
Table I.—Calibration by Method of Gay Lussac.
No. of Step. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Ends of thread.{ | +.010 | −.016 | −.020 | −.031 | +.016 | +.008 | +.013 | +.017 | +.004 | −.088 |
+.038 | +.017 | −.003 | −.022 | +.010 | +.005 | +.033 | +.018 | +.013 | −.003 | |
Excess-Length | −.028 | −.033 | −.017 | −.009 | +.006 | −.003 | −.020 | −.001 | −.004 | +.005 |
Error of step. | −17.6 | −22.6 | − 6.6 | + 1.4 | +16.4 | + 7.4 | − 9.6 | + 9.4 | + 6.4 | +15.4 |
Correction. | +17.6 | +40.2 | +46.8 | +45.4 | +29.0 | +21.6 | +31.2 | +21.8 | +15.4 | 0 |
In the preceding example of the method an interval of ten degrees is taken, divided into ten steps of 1° each. The distances of the ends of the thread from the nearest degree divisions are estimated by the aid of micrometers to the thousandth of a degree. The error of any one of these readings probably does not exceed half a thousandth, but they are given to the nearest thousandth only. The excess length of the thread in each position over the corresponding degree is obtained by subtracting the second reading from the first. Taking the average of the numbers in this line, the mean excess-length is -10.4 thousandths. The error of each step is found by subtracting this mean from each of the numbers in the previous line. Finally, the corrections at each degree are obtained by adding up the errors of the steps and changing the sign. The errors and corrections are given in thousandths of 1°.
Complete Calibration.—The simple method of Gay Lussac does very well for short intervals when the number of steps is not excessive, but it would not be satisfactory for a large range owing to the accumulation of small errors of estimation, and the variation of the personal equation. The observer might, for instance, consistently over-estimate the length of the thread in one half of the tube, and under-estimate it in the other. The errors near the middle of the range would probably be large. It is evident that the correction at the middle point of the interval could be much more accurately determined by using a thread equal to half the length of the interval. To minimize the effect of these errors of estimation, it is usual to employ threads of different lengths in calibrating the same interval, and to divide up the fundamental interval of the thermometer into a number of subsidiary sections for the purpose of calibration, each of these sections being treated as a step in the calibration of the fundamental interval. The most symmetrical method of calibrating a section, called by C.E. Guillaume a “Complete Calibration,” is to use threads of all possible lengths which are integral multiples of the calibration step. In the example already given nine different threads were used, and the length of each was observed in as many positions as possible. Proceeding in this manner the following numbers were obtained for the excess-length of each thread in thousandths of a degree in different positions, starting in each case with the beginning of the thread at 0°, and moving it on by steps of 1°. The observations in the first column are the excess-lengths of the thread of 1° already given in illustration of the method of Gay Lussac. The other columns give the corresponding observations with the longer threads. The simplest and most symmetrical method of solving these observations, so as to find the errors of each step in terms of the whole interval, is to obtain the differences of the steps in pairs by subtracting each observation from the one above it. This method eliminates the unknown lengths of the threads, and gives each observation approximately its due weight. Subtracting the