قراءة كتاب Soap-Bubbles and the Forces Which Mould Them

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Soap-Bubbles and the Forces Which Mould Them

Soap-Bubbles and the Forces Which Mould Them

تقييمك:
0
No votes yet
دار النشر: Project Gutenberg
الصفحة رقم: 2

try the experiment; but as you cannot see this brush across the room, I hold it in front of the lantern, and you can see it enlarged upon the screen (Fig. 1, left hand). Now it is dry, and the hairs are separately visible. I am now dipping it in the water, as you can see, and on taking it out, the hairs, as we expected, cling together (Fig. 1, right hand), because they are wet, as we are in the habit of saying. I shall now hold the brush in the water, but there it is evident that the hairs do not cling at all (Fig. 1, middle), and yet they surely are wet now, being actually in the water. It would appear then that the reason which we always give is not exactly correct. This experiment, which requires nothing more than a brush and a glass of water, then shows that the hairs of a brush cling together not only because they are wet, but for some other reason as well which we do not yet know. It also shows that a very common belief as to opening our eyes under water is not founded on fact. It is very commonly said that if you dive into the water with your eyes shut you cannot see properly when you open them under water, because the water gums the eyelashes down over the eyes; and therefore you must dive in with your eyes open if you wish to see under water. Now as a matter of fact this is not the case at all; it makes no difference whether your eyes are open or not when you dive in, you can open them and see just as well either way. In the case of the brush we have seen that water does not cause the hairs to cling together or to anything else when under the water, it is only when taken out that this is the case. This experiment, though it has not explained why the hairs cling together, has at any rate told us that the reason always given is not sufficient.

I shall now try another experiment as simple as the last. I have a pipe from which water is very slowly issuing, but it does not fall away continuously; a drop forms which slowly grows until it has attained a certain definite size, and then it suddenly falls away. I want you to notice that every time this happens the drop is always exactly the same size and shape. Now this cannot be mere chance; there must be some reason for the definite size, and shape. Why does the water remain at all? It is heavy and is ready to fall, but it does not fall; it remains clinging until it is a certain size, and then it suddenly breaks away, as if whatever held it was not strong enough to carry a greater weight. Mr. Worthington has carefully drawn on a magnified scale the exact shape of a drop of water of different sizes, and these you now see upon the diagram on the wall (Fig. 2). These diagrams will probably suggest the idea that the water is hanging suspended in an elastic bag, and that the bag breaks or is torn away when there is too great a weight for it to carry. It is true there is no bag at all really, but yet the drops take a shape which suggests an elastic bag. To show you that this is no fancy, I have supported by a tripod a large ring of wood over which a thin sheet of india-rubber has been stretched, and now on allowing water to pour in from this pipe you will see the rubber slowly stretching under the increasing weight, and, what I especially want you to notice, it always assumes a form like those on the diagram. As the weight of water increases the bag stretches, and now that there is about a pailful of water in it, it is getting to a state which indicates that it cannot last much longer; it is like the water-drop just before it falls away, and now suddenly it changes its shape (Fig. 3), and it would immediately tear itself away if it were not for the fact that india-rubber does not stretch indefinitely; after a time it gets tight and will withstand a greater pull without giving way. You therefore see the great drop now permanently hanging which is almost exactly the same in shape as the water-drop at the point of rupture. I shall now let the water run out by means of a syphon, and then the drop slowly contracts again. Now in this case we clearly have a heavy liquid in an elastic bag, whereas in the drop of water we have the same liquid but no bag that is visible. As the two drops behave in almost exactly the same way, we should naturally be led to expect that their form and movements are due to the same cause, and that the small water-drop has something holding it together like the india-rubber you now see.

Fig. 2.Fig. 2.
Fig. 3.Fig. 3.

Let us see how this fits the first experiment with the brush. That showed that the hairs do not cling together simply because they are wet; it is necessary also that the brush should be taken out of the water, or in other words it is necessary that the surface or the skin of the water should be present to bind the hairs together. If then we suppose that the surface of water is like an elastic skin, then both the experiments with the wet brush and with the water-drop will be explained.

Let us therefore try another experiment to see whether in other ways water behaves as if it had an elastic skin.

I have here a plain wire frame fixed to a stem with a weight at the bottom, and a hollow glass globe fastened to it with sealing-wax. The globe is large enough to make the whole thing float in water with the frame up in the air. I can of course press it down so that the frame touches the water. To make the movement of the frame more evident there is fixed to it a paper flag.

Now if water behaves as if the surface were an elastic skin, then it should resist the upward passage of the frame which I am now holding below the surface. I let go, and instead of bobbing up as it would do if there were no such action, it remains tethered down by this skin of the water. If I disturb the water so as to let the frame out at one corner, then, as you see, it dances up immediately (Fig. 4). You can see that the skin of the water must have been fairly strong, because a weight of about one quarter of an ounce placed upon the frame is only just sufficient to make the whole thing sink.

This apparatus which was originally described by Van der Mensbrugghe I shall make use of again in a few minutes.

Fig. 4.Fig. 4.

I can show you in a more striking way that there is this elastic layer or skin on pure clean water. I have a small sieve made of wire gauze sufficiently coarse to allow a common pin to be put through any of the holes. There are moreover about eleven thousand of these holes in the bottom of the sieve. Now, as you know, clean wire is wetted by water, that is, if it is dipped in water it comes out wet; on the other hand, some materials, such as paraffin wax, of which paraffin candles are made, are not wetted or really touched by water, as you may see for yourselves if you will only dip a paraffin candle into water. I have melted a quantity of paraffin in a dish and dipped this gauze into the melted paraffin so as to coat the wire all over with it, but I have shaken it well while hot to knock the paraffin out of the holes.

Pages