You are here
قراءة كتاب The Mechanism of Life
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
they grow.
Life is also influenced by light, by mechanical pressure, by the chemical composition of its entourage, and by other conditions which we do not as yet understand. In each case the conditions which are favourable or noxious vary with the nature of the organism, some living in air, some in fresh water, and others in the sea.
Formerly it was supposed that the substance of a living being was essentially different from that of the mineral world, so much so that two distinct chemistries were in existence—organic chemistry, the study of substances derived from bodies which had once possessed life, and inorganic chemistry, dealing
with minerals, metalloids, and metals. We now know that a living organism is composed of exactly the same elements as those which constitute the mineral world. These are carbon, oxygen, hydrogen, nitrogen, phosphorus, calcium, iron, sulphur, chlorine, sodium, potassium, and one or two other elements in smaller quantity. It was formerly supposed that the organic combinations of these elements were found only in living organisms and could be fashioned only by vital forces. In more recent times, however, an ever increasing number of organic substances have been produced in the laboratory.
Organic bodies may be divided into four principal groups. (1) Carbohydrates, including the sugars and the starches, all of which may be considered as formed of carbon and water. (2) Fats, which may be considered chemically as the ethers of glycerine, combinations of one molecule of glycerine and three molecules of a fatty acid, with elimination of water. (3) Albuminoids, substances whose molecules are complex, containing nitrogen and sulphur in addition to carbon, oxygen, and hydrogen. The albuminoid of the cell nucleus also contains phosphorus, and the hæmoglobin of the blood contains iron. (4) Minerals or inorganic elements, such as chloride of sodium, phosphate of calcium, and carbonic acid. This group also includes water, which is the most important constituent, since it forms more than a moiety of the substance of all living creatures.
Wöhler in 1828 accomplished the first synthesis of an organic substance, urea, one of the products of the decomposition of albumin. Since then a large number of organic substances have been prepared by the synthesis of their inorganic elements. The most recent advance in this direction is that of Emile Fischer, who has produced polypeptides having the same reactions as the peptones, by combining a number of molecules of the amides of the fatty acids.
In the further synthesis of organic compounds the problems we have before us are of the same order as those already solved. There is no essential difference between organic and inorganic chemistry; living organisms are formed of the
same elements as the mineral world, and the organic combinations of these elements may be realized in our laboratories, just as in the laboratory of the living organism.
Not only so, but a living being only borrows for a short time those mineral elements which, after having passed through the living organism, are returned once again to the mineral kingdom from which they came.
All matter has life in itself—or, at any rate, all matter susceptible of incorporation in a living cell. This life is potential while the element is in the mineral state, and actual while the element is passing through a living organism.
Mineral matter is changed into organic matter in its passage through a vegetable organism. The carbonic acid produced by combustion and respiration is absorbed by the chlorophyll of the leaves under the stimulus of light—the oxygen of the carbonic acid being returned to the air, while the carbon is utilized by the plant for the formation of sugar, starch, cellulose, and fats.
Thus plants are fed in great part by their leaves, taking an important part of their nourishment from the air, while by their roots they draw from the earth the water, the phosphates, the mineral salts, and the nitrates required for the formation of their albuminoid constituents. A vegetable is a laboratory in which is carried out the process of organic synthesis by which mineral materials are changed into organic matter. The first synthetic reaction is the formation of a molecule of formic aldehyde, CH2O, by the combination of a molecule of water with an atom of carbon.
From this formic aldehyde, or formol, we may obtain all the various carbohydrates by simple polymerization, i.e. by the association of several molecules, with or without elimination of water. Thus two molecules of formol form one molecule of acetic acid, 2CH2O = C2H4O2. Three molecules of formol form a molecule of lactic acid, 3CH2O = C3H6O3. Six molecules of formol represent glucose and levulose, 6CH2O = C6H12O6. Twelve molecules of formol minus one molecule of water form saccharose, lactose, cane sugar, and sugar of milk, 12CH2O = C12H22O11 + H2O; n times six
molecules of formol minus one molecule of water, n(C6H10O5), form starch and cellulose.
Animals derive their nourishment from vegetables either directly, or indirectly through the flesh of herbivorous animals. The mineral matter, rendered organic in its passage through a vegetable growth, is finally returned by the agency of animal organisms to the mineral world again, in the form of carbonic acid, water, urea, and nitrates. Thus vegetables may be regarded as synthetic agents, and animals and microbes as agents of decomposition. Here also the difference is only relative, for in certain cases vegetables produce carbonic acid, while some animal organisms effect synthetic combinations. Moreover, there are intermediary forms, such as fungi, which possessing no chlorophyll are nourished like animals by organic matter, and yet like vegetables are able to manufacture organic matter from mineral salts.
The work of combustion begun by the animal organism is finished by the action of micro-organisms, who complete the oxydation—the re-mineralization of the chemical substances drawn originally from the inorganic world by the agency of plant life.
To sum up. Vegetables obtain their nourishment from mineral substances, which they reduce, de-oxydize, and charge with solar energy. Animal organisms on the contrary oxydize, and micro-organisms complete the oxydation of these substances, returning them to the mineral world as water, carbonates, nitrates, and sulphates.
Thus matter circulates eternally from the mineral to the vegetable, from the vegetable to the animal world, and back again. The matter which forms our structure, which is to-day part and parcel of ourselves, has formed the structure of an infinite number of living beings, and will continue to pursue its endless reincarnation after our decease.
This endless cycle of life is also an endless cycle of energy. The combination of carbon with water carried out by the agency of chlorophyll can only take place with absorption of energy. This energy comes directly from the sun, the red and orange light radiations being absorbed by the chlorophyll.
The arrest of vegetation during the winter months is due not so much to the lowering of temperature as to the diminution of the radiant energy received from the sun. In the same way shade is harmful to vegetation, since the radiant energy required for growth is prevented from reaching the plant.
The energy radiated by the sun is accumulated and stored in the plant tissues. Later on, animals feed on the plants and utilize this energy, excreting the products of