You are here

قراءة كتاب Spinning Tops The "Operatives' Lecture" of the British Association Meeting at Leeds, 6th September, 1890

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Spinning Tops
The "Operatives' Lecture" of the British Association Meeting at Leeds, 6th September, 1890

Spinning Tops The "Operatives' Lecture" of the British Association Meeting at Leeds, 6th September, 1890

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 4

you will remember that my assistant sent that off like a projectile through the air when it was spinning, and that it kept its spinning axis parallel to itself just like this more rigid hat and the biscuit.

Fig. 10 Fig. 10.
Fig. 11 Fig. 11.

I once showed some experiments on spinning tops to a coffee-drinking, tobacco-smoking audience in that most excellent institution, the Victoria Music Hall in London. In that music hall, things are not very different from what they are at any other

music hall except in beer, wine, and spirits being unobtainable, and in short scientific addresses being occasionally given. Now, I impressed my audience as strongly as I could with the above fact, that if one wants to throw a quoit with certainty as to how it will alight, one gives it a spin; if one wants to throw a hoop or a hat to somebody to catch upon a stick, one gives the hoop or hat a spin; the disinclination of a spinning body to let its axis get altered in direction can always be depended upon. I told them that this was why smooth-bore guns cannot be depended upon for accuracy;[4] that the spin which an ordinary bullet took depended greatly on how it chanced to touch the muzzle as it just left the gun, whereas barrels are now rifled, that is, spiral grooves are now cut inside the barrel of a gun, and excrescences from the bullet or projectile fit into these grooves, so that as it is forced along the barrel of the gun by the explosive force of the powder, it must also spin about its axis. Hence it leaves the gun with a perfectly well-known spinning motion about which there can be no doubt, and we know too that Fig. 10 shows the

kind of motion which it has afterwards, for, just like the hat or the biscuit, its spinning axis keeps nearly parallel to itself. Well, this was all I could do, for I am not skilful in throwing hats or quoits. But after my address was finished, and after a young lady in a spangled dress had sung a comic song, two jugglers came upon the stage, and I could not have had better illustrations of the above principle than were given in almost every trick performed by this lady and gentleman. They sent hats, and hoops, and plates, and umbrellas spinning from one to the other. One of them threw a stream of knives into the air, catching them and throwing them up again with perfect precision and my now educated audience shouted with delight, and showed in other unmistakable

ways that they observed the spin which that juggler gave to every knife as it left his hand, so that he might have a perfect knowledge as to how it would come back to him again (Fig. 11).

It struck me with astonishment at the time that, almost without exception, every juggling trick performed that evening was an illustration of the above principle. And now, if you doubt my statement, just ask a child whether its hoop is more likely to tumble down when it is rapidly rolling along, or when it is going very slowly; ask a man on a bicycle to go more and more slowly to see if he keeps his balance better; ask a ballet-dancer how long she could stand on one toe without balancing herself with her arms or a pole, if she were not spinning; ask astronomers how many months would elapse before the earth would point ever so far away from the pole star if it were not spinning; and above all, ask a boy whether his top is as likely to stand upright upon its peg when it is not spinning as when it is spinning.

Fig. 12 Fig. 12.

We will now examine more carefully the behaviour of this common top (Fig. 12). It is not

spinning, and you observe that it tumbles down at once; it is quite unstable if I leave it resting upright on its peg. But now note that when it is spinning, it not only will remain upright resting on its peg, but if I give it a blow and so disturb its state, it goes circling round with a precessional motion which grows gradually less and less as time goes on, and the top lifts itself to the upright position again. I hope you do not think that time spent in careful observation of a phenomenon of this kind is wasted. Educated observation of the commonest phenomena occurring in our everyday life is never wasted, and I often feel that if workmen, who are the persons most familiar with inorganic nature, could only observe and apply simple scientific laws to their observations, instead of a great discovery every century we should have a great discovery every year. Well, to return to our top; there are two very curious observations to make. Please neglect for a short time the slight wobbling motions that occur. One observation we make is, that the top does not at first bow down in the direction of the blow. If I strike towards the south, the top bows towards the west; if I strike towards the west, the top bows down towards the north. Now the reason of this is known to all scientific men, and the principle underlying the top's behaviour is of very great

importance in many ways, and I hope to make it clear to you. The second fact, that the top gradually reaches its upright position again, is one known to everybody, but the reason for it is not by any means well known, although I think that you will have no great difficulty in understanding it.

The first phenomenon will be observed in this case which I have already shown you. This case (Fig. 5),

with the fly-wheel inside it, is called a gyrostat. When I push the case it does not bow down, but slowly turns round. This gyrostat will not exhibit the second phenomenon; it will not rise up again if I manage to get it out of its upright position, but, on the contrary, will go precessing in wider and wider circles, getting further and further away from its upright position.

Fig. 13 Fig. 13.
Fig. 14 Fig. 14.

The first phenomenon is most easily studied in this balanced gyrostat (Fig. 13). You here see the fly-wheel G in a strong brass frame F, which is supported so that it is free to move about the vertical axis A B, or about the horizontal axis C D. The gyrostat is balanced by a weight W. Observe that I can increase the leverage of W or diminish it by shifting the position of the sleeve at A so that it will tend to either lift or lower the gyrostat, or exactly balance it as it

Pages