قراءة كتاب A Manual of Elementary Geology or, The Ancient Changes of the Earth and its Inhabitants as Illustrated by Geological Monuments

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
A Manual of Elementary Geology
or, The Ancient Changes of the Earth and its Inhabitants as Illustrated by Geological Monuments

A Manual of Elementary Geology or, The Ancient Changes of the Earth and its Inhabitants as Illustrated by Geological Monuments

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 6

href="@public@vhost@g@gutenberg@html@files@34350@[email protected]#img332" class="pginternal" tag="{http://www.w3.org/1999/xhtml}a">figs. 348, 349., ought rather to be referred to the Trias than to the Permian group.

CRETACEOUS GASTEROPODA.

In speaking of the chalk of Faxoe in Denmark (p. 210.) or the highest member of the Cretaceous series, I have remarked that it is characterized by univalve Mollusca, both spiral and patelliform, which are wanting or rare in the white chalk of Europe. This last statement requires, I find, some modification. It holds true in regard to certain forms, such as Cypræa and Oliva, found at Faxoe; but M. A. d'Orbigny enumerates 24 species of Gasteropoda from the white chalk (Terrain Sénonien) of France alone. The same author describes 134 French species of Gasteropoda from the chloritic chalk marl and upper greensand (Turonien), 77 from the gault, and 90 from the lower greensand (Neocomien), in all 325 species of Gasteropoda, from the cretaceous group below the Maestricht beds. Among these he refers 1 to the genus Mitra, 17 to Fusus, 17 to Trochus, 4 to Emarginula, and 36 to Cerithium. Notwithstanding, therefore, the peculiarity of the chambered univalves of various genera, so abundant in the chalk, the Mollusca of the period approximate in character to the tertiary and recent Fauna far more than was formerly supposed.

DICOTYLEDONOUS LEAVES IN LOWER CRETACEOUS STRATA.

M. Adolphe Brongniart when founding his classification of the fossiliferous strata in reference to their imbedded fossil plants, has placed the cretaceous group in the same division with the tertiary, that is to say, in his "Age of Angiosperms."[xvi-A] This arrangement is based on the fact, that the cretaceous plants display a transition character from the vegetation of the secondary to that of the tertiary periods. Coniferæ and Cycadeæ still flourished as in the preceding oolitic and triassic epochs; but with these fossils, some well-marked leaves of dicotyledonous trees referred to several species of the genus Credneria, had been found in Germany in the Quadersandstein and Pläner-kalk. Still more recently, Dr. Debey of Aix-la-Chapelle has met with a great variety of other leaves of dicotyledonous plants in the cretaceous flora[xvi-B], of which he enumerates no less than 26 species, some of the leaves being from four to six inches in length, and in a beautiful state of preservation. In the absence of the organs of fructification and of fossil fruits, the number of species may be exaggerated; but we may nevertheless affirm, reasoning from our present data, that in the lower chalk of Aix-la-Chapelle, Dicotyledonous Angiosperms flourished nearly in equal proportions with Gymnosperms; a fact of great significance, as some geologists had wished to connect the rarity of dicotyledonous trees with a peculiarity in the state of the atmosphere in the earlier ages of the planet, imagining that a denser air and noxious gases, especially carbonic acid in excess, were adverse to the prevalence, not only of the quick-breathing classes of animals, (mammalia and birds,) but to a flora like that now existing, while it favoured the predominance of reptile life, and a cryptogamic and gymnospermous flora. The co-existence, therefore, of dicotyledonous angiosperms in abundance with Cycads and Coniferæ, and with a rich reptilian fauna comprising the Iguanodon, Ichthyosaurus, Pliosaurus, and Pterodactyl, in the lower cretaceous series tends, like the oolitic mammalia of Stonesfield and Stuttgart, and the triassic birds of Connecticut, to dispel the idea of a meteorological state of things in the secondary periods widely distinct from that now prevailing.

General remarks.—In the preliminary chapters of "The Principles of Geology," in the first and subsequent editions, I have considered the question, how far the changes of the earth's crust in past times confirm or invalidate the popular hypothesis of a gradual improvement in the habitable condition of the planet, accompanied by a contemporaneous development and progression in organic life. It had long been a favourite theory, that in the earlier ages to which we can carry back our geological researches, the earth was shaken by more frequent and terrible earthquakes than now, and that there was no certainty nor stability in the order of the natural world. A few sea-weeds and zoophytes, or plants and animals of the simplest organization, were alone capable of existing in a state of things so unfixed and unstable. But in proportion as the conditions of existence improved, and great convulsions and catastrophes became rarer and more partial, flowering plants were added to the cryptogamic class, and by the introduction of more and more perfect species, a varied and complex flora was at last established. In like manner, in the animal kingdom, the zoophyte, the brachiopod, the cephalopod, the fish, the reptile, the bird, and the warm-blooded quadruped made their entrance into the earth, one after the other, until finally, after the close of the tertiary period, came the quadrumanous mammalia, most nearly resembling man in outward form and internal structure, and followed soon afterwards, if not accompanied at first, by the human race itself.

The objections which, in 1830, I urged against this doctrine[xvii-A], in so far as relates to the passage of the earth from a chaotic to a more settled condition, have since been embraced by a large and steadily increasing school of geologists; and in reference to the animate world, it will be seen, on comparing the present state of our knowledge with that which we possessed twenty years ago, how fully I was justified in declaring the insufficiency of the data on which such bold generalizations, respecting progressive development, were based. Speaking of the absence, from the tertiary formations, of fossil Quadrumana, I observed, in 1830, that "we had no right to expect to have detected any remains of tribes which live in trees, until we knew more of those quadrupeds which frequent marshes, rivers, and the borders of lakes, such being usually first met with in a fossil state."[xvii-B] I also added, "if we are led to infer, from the presence of crocodiles and turtles in the London clay, and from the cocoa-nuts and spices found in the isle of Sheppey, that at the period when our older tertiary strata were formed, the climate was hot enough for the Quadrumana, we nevertheless could not hope to discover any of their skeletons, until we had made considerable progress in ascertaining what were the contemporary Pachydermata; and not one of these has been discovered as yet in any strata of this epoch in England."

Nine years afterwards, when these fossil Pachyderms had been found in the London clay, and in the sandy strata at its base, the remains of a monkey, of the genus Macacus, were detected near Woodbridge, in Suffolk; and

Pages