You are here
قراءة كتاب The Nature of Animal Light
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
confusing the light from a supposed luminous form with the light from truly luminous organisms living upon it. The reported cases of luminosity among marine algæ are now known to be due to hydroids or unicellular organisms living on the alga.
We know also that many non-luminous forms may become infected with luminous bacteria, not only after
death, but also while living, so that their luminescence is purely secondary. Giard and Billet (1889-90) succeeded in inoculating many different kinds of amphipod crustacea (Talitrus, Orchestia, Ligia) and isopod crustacea (Porcellio, Philoscia) with luminous bacteria, in some cases passing the infection from one to the next through nine individuals. Curiously enough the bacterium did not produce light on artificial culture media but did when growing in the body of the crustacea, which were killed in about seven days by the infection. The species of Talitrus and Orchestia might easily have been taken for truly luminous animals if not carefully investigated.
Tarchanoff (1901) has injected luminous bacteria into the dorsal lymph sac of frogs with the result that the animals continued to glow for three to four days, especially about the tongue. I remember once while collecting luminous beetles in Cuba, I was astounded to find a frog which was luminous. Expecting this animal to be of great interest, I examined it further only to find that the frog had just finished a hearty meal of fireflies, whose light was shining through the belly with considerable intensity.
Infection with luminous bacteria is especially liable to occur in any dead marine animal. The flesh is an excellent culture medium. I have seen non-luminous species of squid, recently killed, covered with minute growing colonies, quite evenly spaced, so as to closely resemble luminous species whose light is restricted to scattered light organs over the surface of the body.
Indeed Pierantoni (1918) has carried this idea to extremes. He believes that in the luminous organs of fireflies, cephalopods and Pyrosoma, luminous symbiotic
bacteria occur which are responsible for the light of these animals, and he claims in the case of cephalopods and Pyrosoma to have been able to isolate these in pure culture on artificial culture media. In the firefly they can be seen but not grown and in luminous animals where no visible bacteria-like structures are apparent he believes we are dealing with ultra-microscopic luminous bacteria similar to the pathogenic forms suspected in filterable viruses. While the assumption of ultra-microscopic organisms makes the refutation of Pierantoni's views a somewhat hazardous task, no one can deny that even an ultra-microscopic organism will be killed by boiling with 20 per cent. (by wt.) HCl for 6 hours. As we shall see, the luminous material of Cypridina, an ostracod crustacean, can withstand such prolonged boiling with strong acid. The light of one animal at least, and I believe many others also, cannot be due to any sort of symbiotic organism.
Apart from these cases where light is actually produced but is not primary, not produced by the animal itself, there are many forms whose surface is so constituted as to produce interference colors. This is true in many cases among the birds and butterflies whose feathers and scales are iridescent. Some of these have been erroneously described as luminous. Perhaps the best known case among aquatic animals is Sapphirina, a marine copepod living at the surface of the sea, and especially likely to be collected with other luminous forms. Its cuticle is so ruled with fine lines as to diffract the light and flash on moving much as a fire opal. Needless to say no trace of light is given off from this animal in a totally dark room.
It has often been supposed that the eye of a cat or of other animals is luminous. The eyes of a moth, also,
can be seen to glow like beads of fire when it is flying about a flame. Both of these cases are, however, purely reflection phenomena and due to reflection out of the eye again of light which has entered from some external source. The correct explanation was given by Prevost in 1810. The eye of any animal is quite invisible in absolute darkness. The same explanation applies to the moss, Schistostega, which lives in dimly illuminated places and whose cells are almost spherical, constructed like a lens, so as to refract the light and condense it on the chloroplasts at the bottom of the cells. Some of this light is reflected out of the cells again and gives the appearance of self-luminosity. The alga, Chromophyton rosanoffii, is another example of apparent luminosity, due to reflection from almost spherical cells.
There are several light phenomena known which have nothing to do with living organisms. Commonest of these is St. Elmo's fire ("corposants" of English sailors), a glow accompanying a slow brush discharge of electricity, which appears as a tip of light on masts of ships, spires of churches or even the fingers of the hand. It is best seen in winter during and after snowstorms and is a purely electrical phenomenon.
Less well known is the Ignis fatuus (Will-o'-the-Wisp, Jack-o'-Lantern, spunkie), a fire seen over marshes and stagnant pools, appearing as a pale bluish flame which may be fixed or move, steady or intermittent. So uncommon is this phenomenon that its nature is not well understood, but it is believed to be the result of burning phosphine (PH3 + P2H4), a self-inflammable gas, generated in some way from the decomposition of organic matter in the swamp. The difficulty with this explanation is that
phosphine is not known as a decomposition product of organized matter. Methane (CH4), a well-known decomposition product of organic matter and abundantly formed in swamps, will burn with a pale bluish flame and some have thought the Ignis fatuus to be the result of this gas. As methane is not self-inflammable there remains the difficulty of explaining how it becomes lighted. Although still a mystery, it is possible that this light is also of electrical origin or that in some cases large clusters of luminous fungi have been observed.
The flashing of flowers, especially those of a red or orange color, like the poppy, which many observers have noticed during twilight hours, is a purely subjective phenomenon due to the formation of after images in eyes partially adapted to the dark. This flashing, first observed by the daughter of Linnæus, is never observed in total darkness or in the direct field of vision, but only in the indirect field as during a sidelong glance at the plant.
There are some cases of luminosity on record in connection with man himself. (See Heller, 1854). Before the days of aseptic and antiseptic surgery, wounds frequently became infected with luminous bacteria and glowed at night. The older surgeons even supposed that luminous wounds were more apt to heal properly than non-luminous ones. We know that luminous bacteria are non-pathogenic, harmless organisms and the presence of these forms even on dead fish or flesh never accompanies but always precedes putrefaction. As recorded by Robert Boyle, no harm has come from eating luminous meat, unless it may also have become infected with pathogenic forms.
A few cases of luminous individuals have been noted
in which the skin was the source of light, especially if the person sweated freely. It is possible that here we are again dealing with luminous bacteria upon the accumulations of substances passed out in the sweat, which serves as a nutrient medium.
There are also on record,


