You are here
قراءة كتاب Paper-Cutting Machines A Primer of Information about Paper and Card Trimmers, Hand-Lever Cutters, Power Cutters and Other Automatic Machines for Cutting Paper
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

Paper-Cutting Machines A Primer of Information about Paper and Card Trimmers, Hand-Lever Cutters, Power Cutters and Other Automatic Machines for Cutting Paper
Knives
Every knife, when coming direct from the grinding machine, has a wire edge which should be honed off before the knife is adjusted to the knife-bar. Excellent results in honing are obtained from No. 1 Washita oilstone (Pike Mfg. Co., N.H., U.S.A.), or an india oilstone made by W. H. Price, Hartford, Conn.
The knife should be laid on a bench or table, flat side down, with the edge of the knife protruding about one-eighth of an inch beyond the edge of the table. The hone should be held flat on the bevel, and the motion should be a circular or rotary movement as well as up and down, and the honing should be done from one end to the other without lifting the hone from the knife.
When a fine wire edge appears on the flat side, lay the hone on lightly with no pressure and absolutely flat, and draw from one end to the other. After honing the knife for a short time (four or five minutes) the wire edge will disappear or get so thin that a small piece of white pine or other soft wood, if drawn along the cutting edge, will eliminate this thin wire edge. Never hone the flat side of the knife. Never hone a knife while in the machine.
A wooden holder for the oilstone will protect the fingers.
For smooth "glass edge" cutting, the bevel of the knife may be ground slightly concave. Then hone thoroughly with an extra fine hone slightly convex in shape.
No method of grinding has yet been devised which will leave a perfectly smooth surface, because no matter how fine the stone or material that is used for grinding it will leave marks on the edge of the knife, and these marks cause roughness in the cut. The reason the above method gives almost a perfectly smooth cut is because a thorough honing removes most of the marks.
The Clamping Pressure
The clamping of the stock in the machine while the cut is being made is an important feature of a modern paper cutter. This is done by means of a horizontal bar placed behind the knife and parallel with it. This clamping bar is moved up out of the way while the stock is being placed in position and is then brought down with the desired pressure to hold the pile of sheets firmly until the cut is made, and is again lifted up out of the way.
In the simpler machines the clamping pressure is obtained by means of a stout vertical threaded rod to which the clamp bar is attached at the lower end. The rod is operated by a hand wheel at the top and turns in a threaded opening in the cross-head of the frame.
Clamping pressures vary greatly under different conditions, from a light pressure to several tons. The ratio of the power applied in hand clamping to the pressure secured on the clamp is, in ordinary commercial machines, about 1 to 150 for small machines up to 32 inches wide, using a 2-foot-diameter clamp wheel and overhead screw. The ratio of power in cutting machines 34 inches and wider, having a 1½-foot-diameter clamp wheel, and worm of ¾-inch pitch at the side engaging a worm gear keyed to the clamp shaft, is about 1 to 180. That is, a pull by the hand of 1 pound on the overhead clamp wheel will produce about 150 pounds pressure of the clamp on the stock to be cut; and a pull by the hand of 1 pound on the side clamping wheel will produce about 180 pounds pressure of the clamp, less friction. Operators will pull ordinarily from 10 to 100 pounds; i.e., producing a pressure of from one to nine tons.
The first type of automatic-clamp cutting machines produced always the same arbitrary pressure on the clamp, with consequent waste of power, crushing and indenting the work, offsetting the ink unless it was absolutely dry, and requiring adjusting with a wrench, which was slow, dirty, and indefinite.
All modern automatic-clamp cutting machines have independent automatic-clamp pressure, and these apply the pressure at both ends of the clamp. The earliest power clamps were called "self-clamp." In these the knife and clamp were connected together (i.e., dependent). The modern automatic-clamp mechanism is not only independent of the knife, but in addition practically all the power of the belt goes first to clamp the work and then afterwards to drive the knife through the cut. This separation of the clamping effort from the cutting effort increases efficiency and economy.
By a modern device on some machines this clamping pressure is instantly variable to suit different kinds of stock and other conditions.
Cutting Sticks
The cutting stick, into which the knife passes after cutting through the bottom sheet, saves the edge from cutting on the iron table.
Correctly designed cutting machines have knife-bar motions that permit no "chug" of the knife into the stick and thus conserve its sharp edge. Many designs, however, are faulty in this respect and the unrecorded expense of their operation is a serious leak.
The cutting stick is set in a slot in the table. The most common and perhaps best form, everything considered, is a ¾-inch square hard maple stick, set so that the knife strikes it ¼-inch from the edge. All four faces of such a stick may be used.
A metal frame for holding a ¼-inch square hardwood stick, or a soft metal (so-called) cutting stick, is made. A round wood cutting stick connected to a timing mechanism which rotates it automatically for every cut, or for a certain number of cuts, is valuable for hard stock requiring microscopical perfection.
The Back Gage
The back gage is moved and controlled on the machine table in several ways. In the simpler machines the gage is attached to a rod under the table, a long slot in the center of the table allowing the connection of the gage with the rod below. The rod is attached to the gage with a worm gear and is operated by a small hand wheel at the front of the table. In other machines the gage is attached to a steel cable, or a metal tape, or a chain which passes over wheels at the back and front below the table.
The one-piece back gage was improved by cutting it into two or three sections so that the first and final cuts of two or three piles may be made at every stroke of the knife. Adjusting screws are provided for tilting the back gage forward or backward to compensate for the variation in the width of the top and the bottom sheets which occurs in the same machine and with the same knife when cutting hard or soft papers. A swinging adjustment is also provided to "square" the back gage parallel with the knife edge.
Various devices for taking up the slack caused by wear in the table slot guiding the back gage are furnished, but probably the simplest and best method is the replacement and refitting of the inexpensive sliding part.
INDICATOR ATTACHMENT FOR BACK GAGE
The distance the back gage is moved is read in different ways. The movement of a gage operated by a screw and wheel is indicated by a pointer on the front edge of the table overlapping the rim of the long screw wheel. If the rim of the screw wheel is lined off in sixteenths of its circumference, the pitch of the screw being one inch, each complete turn of the screw wheel means that the back gage is advanced one inch, and each one-sixteenth turn means that it is advanced one-sixteenth of an inch. It is important always to keep turning the screw and wheel the same way when so measuring, because otherwise the "back lash" (looseness of the screw and its nut to permit easy working) will cause variation.
For a back gage moved by a chain or a wire cable or a metal tape, a graduated dial is attached to the top of the cable hand wheel which reads from a pointer attached to the front edge of the table.
Both these ways of reading require the operator to look down.
For a back gage moved by power, a steel indicator ribbon passing around a wheel overhead in the frame cap and attached to a standard on top of the back gage (see Fig. 7) enables the operator to read the position of

