قراءة كتاب Photogravure

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Photogravure

Photogravure

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 5

Talbot introduced a process termed photoglyphy, and in 1854 Paul Pretsch, of Vienna, patented a process which he termed photogalvanography. In 1870 the late Walter B. Woodbury, inventor of the Woodburytype process, suggested to M. Rousselon, of M. M. Goupil & Co.,[A] a process which he had discovered, and which he describes[B] as follows:

"The method, as perhaps many of your readers know, is based on the fact that some pigments used in carbon printing have an unpleasant habit of granulating when mixed with gelatine and bichromate, destructive to their use in carbon printing and Woodburytype, but bearing the essence of success in an engraving process where grain is necessary. The origin of this method was simply owing to my getting some bad reliefs, in which this effect was first noticed. Out of this arose the photo-engraving process which, as I said before, is now claimed as the invention of a Frenchman. But I am digressing.

"This relief, possessing a suitable grain, could, by hydraulic pressure, be made to transfer its minutest details to metal without any loss to fineness, so giving a plate possessing all the properties of a mezzotint. The methods hitherto used of electrotyping would have proved useless, as all detail would have been lost. The same thing applies to the new method I am now about to bring before your readers. The latter process of getting the grain transferred to a hard metal remains the same; but the novelty is in the method of producing the grained plate. To those who have practiced the process of enameling, as used by Geymet and Alker, and others, my description will be better understood.

"I first coat a thin, polished steel plate (zinc will answer) with a very thin coating of gum, glucose, and bichromate as used for enameling. This I dry rapidly, and, while still warm and desiccated, expose under a glass positive. On removal from the frame after exposure the plate is made to take up a slight amount of moisture by breathing on it.

"During this stage I brush or dust over it any hard powder, such as emery, powdered glass, etc, but these I keep of different degrees of fineness or coarseness. No. 1, is of a coarse quality, and is used first; No. 2 is finer; and No. 3 is of the finest grain obtainable. These are obtained by passing through muslin of different degrees of fineness. Having in the first stage of moisture used the No. 1, or coarsest, powder, after a time No. 2 is dusted over and adheres to the middle tints, while the very finest tones, which have almost lost their sticky qualities by the exposure to light, are treated to No. 3.

"Now we possess a granular picture having all the true qualities required in a photo-engraved plate, or, rather, such as will give a reverse in metal having these qualities. The steel or zinc plate is then to be exposed to light to completely harden the mixture all over, and is then treated exactly as in my other engraving process; that is, pressed into soft metal by hydraulic pressure, electrotyped, and then the surface is aciercised or coated with steel. The dark parts are thus represented by a coarse grain, the middle tints by a medium grain, and the finest shades by the most infinitesimal particles, thus meeting all requirements necessary to a successful photo engraving process."

This process was taken up by a Frenchman and claimed by him as his own invention. The chief difficulty with it was that the plates before being perfect require the work of a skillful engraver, sometimes for weeks. They were therefore very costly, six dollars per square inch being charged for the making of the plate alone.

Klic's process, 1886, was the next important improvement in photogravure or intaglio printing, and since then many other processes and improvements have been introduced by Obernetter, Waterhouse, Colls, Zuccato, Sawyer and others.

In the following chapters Mr. H. R. Blaney gives a working description of the process as practiced to-day by many of the leading firms in this and other countries. This originally appeared in the columns of The Photographic Times, but I have made many additions that I have imagined may be of value to the student. A dividing line will be found between Mr. Blaney's writings and my own additions.

THE EDITOR.


CHAPTER I.

The Negative.

Any negative may be used for photogravure, that is, taken from nature, or from a painting or engraving, provided it is reversed, and, in the case of paintings, should, in addition, be on an orthochromatic plate. The negative should be soft and brilliant, well exposed, and not hard or under-exposed. A reversed negative is always necessary if the print from the copper plate is required to be similar in regard to right and left, or if no other means are to be taken, to reverse the image upon the copper plate. Professionals use stripping plates especially made for this purpose for small work, or the reversed negative may be made in the copying camera. A fairly good reversed negative can be made by contact in the printing frame from an albumen print from the original negative, the print made transparent with white wax by being placed on a piece of warm, clean metal and the wax rubbed over the face. To have the negative reversed, the print should first be placed, face out, against the glass of the printing frame, with its back against the sensitive surface of the transparency plate, the back closed in and exposed to a large lamp for about five seconds. Every care must be taken that you use the best of negatives, carefully retouched if necessary, as the professional photographic etchers have informed me that (from their standpoint) the success of the whole process depends on the quality of the original negative and the care taken in artistic retouching.


It will often happen in commercial photogravure work that plates have to be made from all kinds of original negatives. In cases where these are flat from over-exposure it is well to make a carbon transparency; intensifying the image with a strong solution of permanganate of potash, and from this make a fresh negative upon a slow or Carbutt transparency plate.

Mr. Horace Wilmer says: "The class of negative most suitable is such as gives a good result by any of the printing processes. A bright sparkling negative will always give a good plate, but I do not find that any satisfactory results can be got from a soft flat negative. The negative should be as perfect as possible. It is absolutely useless to work from a faulty negative. Contrasts on it may be increased by retouching. Such contrasts are desirable because the tendency of the etching is to reduce them somewhat."

Perhaps the simplest way of obtaining a reversed negative is by placing the dry plate in the slide film inside and exposing through the glass, of course after allowing in focusing for the thickness of the glass plate. With the wet-collodion process, usually the method employed by large photomechanical printers, this method can be used because it is a simple matter to carefully examine the glass plate to be employed, but it will be obvious that with the ordinary dry plate all the imperfections of the glass, such as dirt, scratches, air-bubbles, etc., will be clearly reproduced in the image.

Another method

Pages