You are here
قراءة كتاب Photographs of Nebulæ and Clusters, Made with the Crossley Reflector
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

Photographs of Nebulæ and Clusters, Made with the Crossley Reflector
lowest power utilizes 28 inches of the mirror. The other eyepieces call for no remark.
But, while the Crossley reflector would doubtless be serviceable for various kinds of visual observations, its photographic applications are regarded as having the most importance, and have been chiefly considered in deciding upon the different changes and improvements which have been made.
The interior of the dome is lighted at night by a large lamp, which is enclosed in a suitable box or lantern, fitted with panes of red glass, and mounted on a portable stand. In order to diffuse the light in the lower part of the dome, where most of the assistant’s work is done, the walls are painted bright red; while to prevent reflected light from reaching the photographic plate, the inner surface of the dome itself, the mounting, and the ladders and gallery are painted dead black. The observer is therefore in comparative darkness, and not the slightest fogging of the plate, from the red light below, is produced during a four-hours’ exposure. On the few occasions when orthochromatic plates are used the lamp need not be lighted.
Experiments have shown that the fogging of the photographic plate, during a long exposure, is entirely due to diffuse light from the sky, and is therefore unavoidable. For this reason the cloth curtains which lace to the corners of the telescope tube, enclosing it and shutting out light from the lower part of the dome, have not been used, since their only effect would be to catch the wind and cause vibrations of the telescope. They would probably have little effect on the definition, and at any rate could not be expected to improve it.
For photographing stars and nebulæ the Crossley reflector is provided with a double-slide plate-holder, of the form invented by Dr. Common.[8] This apparatus, which had suffered considerably in transportation, and from general wear and tear, was thoroughly overhauled by the Observatory instrument-maker. The plates were straightened and the slides refitted. A spring was introduced to oppose the right ascension screw and take up the lost motion—the most annoying defect that such a piece of apparatus can have—and various other improvements were made, as the necessity for them became apparent. They are described in detail farther below.
The present appearance of the eye-end is shown in the illustration. The plate-holder is there shown, however, on one side of the tube, and its longer side is parallel to the axis of the telescope. This is not a good position for the eye-end, except for short exposures. In practice, the eye-end is always placed on the north or south side of the tube, according as the object photographed is north or south of the zenith. The right ascension slide is then always at right angles to the telescope axis, and the eye-end can not get into an inaccessible position during a long exposure.
As the original wooden plate-holders were warped, and could not be depended upon to remain in the same position for several hours at a time, they were replaced by new ones of metal, and clamping screws were added, to hold them firmly in place. The heads of these screws are shown in the plate, between the springs which press the plate-holder against its bed.
To illuminate the cross-wires of the guiding eyepiece, a small electric lamp is used, the current for which is brought down from the storage battery at the main Observatory. The coarse wires have been replaced by spider’s webs,[9] and reflectors have been introduced, to illuminate the declination thread. A collimating lens, placed at its principal focal distance from the incandescent filament of the lamp, makes the illumination of the wires nearly independent of their position on the slide, and a piece of red glass, close to the lens, effectually removes all danger of fogging the plate. The light is varied to suit the requirements of observation by rotating the reflector which throws the light in the direction of the eyepiece.