You are here

قراءة كتاب An Introduction to Chemical Science

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
An Introduction to Chemical Science

An Introduction to Chemical Science

تقييمك:
0
No votes yet
دار النشر: Project Gutenberg
الصفحة رقم: 8

Symbols would have no meaning if this were not so.

Write and explain the equation for the experiment with copper and sulphur, using names, symbols, and weights, as above.

CHAPTER V.
MANIPULATION.

17. To Break Glass Tubing.

Experiment 8.—Lay the tubing on a flat surface, and draw a sharp three-cornered file two or three times at right angles across it where it is to be broken, till a scratch is made. Take the tube in the hands, having the two thumbs nearly opposite the scratch, and the fingers on the other side. Press outward quickly with the thumbs, and at the same time pull the hands strongly apart, and the tubing should break squarely at the scratch.

To break large tubing, or cut off bottles, lamp chimneys, etc., first make a scratch as before; then heat the handle of a file, or a blunt iron—in a blast-lamp flame by preference—till it is red-hot, and at once press it against the scratch till the glass begins to crack. The fracture can be led in any direction by keeping the iron just in front of it. Re-heat the iron as often as necessary.

18. To Make Ignition-Tubes.

Experiment 9.—Hold the glass tubing between the thumb and forefinger of each hand, resting it against the second finger. Heat it in the upper flame, slowly at first, then strongly, but heat only a very small portion in length, and keep it in constant rotation with the right hand. Hold it steadily, and avoid twisting it as the glass softens. The yielding is detected by the yellow flame above the glass and by an uneven pressure on the hands. Pull it a little as it yields, then heat a part just at one side of the most softened portion. Rotate constantly without twisting, and soon it can be separated into two closed tubes. No thread should be attached; but if there be one, it can be broken off and the end welded. The bottom can be made more symmetrical by heating it red-hot, then blowing, gradually, into the open end, this being inserted in the mouth. The parts should be annealed by holding above the flame for a short time, to cool slowly.

For hard glass—Bohemian—or large tubes, the blast-lamp or blowpipe is needed. In the blast-lamp air is forced out with illuminating gas. This gives a high degree of heat. Bulbs can be made in the same way as ignition-tubes, and thistle-tubes are made by blowing out the end of a heated bulb, and rounding it with charcoal.

19. To Bend Glass Tubing.

Experiment 10.—Hold the tube in the upper flame. Rotate it so as to heat all parts equally, and let the flame spread over 3 or 4 cm. in length. When the glass begins to yield, without removing from the flame slowly bend it as desired. Avoid twisting, and be sure to have all parts in the same plane; also avoid bending too quickly, if you would have a well-rounded joint. Anneal each bend as made. Heated glass of any kind should never be brought in contact with a cool body. For making O, H, etc., a glass tube — delivery-tube—50 cm. long should have three bends, as in Figure 6. The pupil should first experiment with short pieces of glass, 10 or 15 cm. long. An ordinary gas flame is the best for bending glass.

20. To Cut Glass.

Experiment 11.—Lay the glass plate on a flat surface, and draw a steel glass-cutter—revolving wheel—over it, holding this against a ruler for a guide, and pressing down hard enough to scratch the glass. Then break it by holding between the thumb and fingers, having the thumbs on the side opposite to the scratch, and pressing them outward while bending the ends of the glass inward. The break will follow the scratch.

Holes can be bored through glass and bottles with a broken end of a round file kept wet with a solution of camphor in oil of turpentine.

21. To Perforate Corks.

Experiment 12.—First make a small hole in the cork with the pointed handle of a round—rat-tail—file. Have the hole perpendicular to the surface of the cork. This can be done by holding the cork in the left hand and pressing against the larger surface, or upper part, of the cork, with the file in the right hand. Only a mere opening is made in this way, which must be enlarged by the other end of the file. A second or third file of larger size may be employed, according to the size of the hole to be made, which must be a little smaller than the tube it is to receive, and perfectly round.

CHAPTER VI.
OXYGEN.

22. To Obtain Oxygen.

Experiment 13.—Take 5 g. of crystals of potassium chlorate (KClO3) and, without pulverizing, mix with the same weight of pure powdered manganese dioxide (MnO2). Put the mixture into a t.t., and insert a d.t.—delivery-tube—having the cork fit tightly. Hang it on a r.s.—ring-stand,— as in Figure 7, having the other end of the d.t.

(Fig 7.)

under the shelf, in a pneumatic trough, filled with water just above the shelf. Fill three or more receivers—wide-mouthed bottles—with water, cover the mouth of each with a glass plate, invert it with its mouth under water, and put it on the shelf of the trough, removing the plate. No air should be in the bottles. Have the end of the d.t. so that the gas will rise through the orifice. Hold a lighted lamp in the hand, and bring the flame against the mixture in the t.t. Keep

the lamp slightly in motion, with the hand, so as not to break the t.t. by over-heating in one place. Heat the mixture strongly, if necessary. The upper part of the t.t. is filled with air: allow this to escape for a few seconds; then move a receiver over the orifice, and fill it with gas. As soon as the lamp is taken away, remove the d.t. from the water. The gas contracts, on cooling, and if not removed, water will be drawn over, and the t.t. will be broken. Let the t.t. hang on the r.s. till cool.

With glass plates take out the receivers, leaving them covered, mouth upward (Fig. 8), with little or no water inside. When cool, the t.t. may be cleaned with water, by covering its mouth with the thumb or hand, and shaking it vigorously.

What elements, and how many, in KClO3? In Mn02? It is evident that each of these compounds contains O. Why, then, could we not have taken either separately, instead of mixing the two? This could have been done at a sufficiently high temperature. Mu02 requires a much higher temperature for dissociation, i.e. separation into its elements, than KClO3, while a mixture of the two causes O to come off from KClO3 at a lower temperature than if alone. It is not known that Mn02 suffers any change.

Each molecule of potassium chlorate undergoes the following change:—

Potassium Chlorate = Potassium Chloride + Oxygen
KClO3 = KCl + 3 O.

Is this analysis or synthesis? Complete the equation, by using weights, and explain it. Notice whether the right- hand member of the equation has the same number of atoms as the left. Has anything been lost or gained? What element has heat separated? Does the experiment show whether O is very soluble in water? How many grams of O are obtainable from 122.58 g. KCIO3? PROPERTIES.

23. Combustion of Carbon.

OXYGEN Experiment 14.—Examine the gas in one of the receivers. Put a lighted splinter into the receiver, sliding along the glass cover. Remove it, blow it out, and put in again while glowing. Is it re-kindled? Repeat till it will no longer burn. Is the gas a supporter of combustion? How did the combustion compare with that in air? Is it probable that air is pure O? Why did the flame at last go out? Has the O been destroyed, or chemically united with something else?

Wood

Pages