قراءة كتاب The World Before the Deluge
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
deposits, in such a manner as to change their nature in divers ways. Whence is derived a third class of rocks called Metamorphic or altered rocks, our knowledge of which is of comparatively recent date.
Fossils.
The name of Fossil (from fossilis, dug up) is given to all organised bodies, animal or vegetable, buried naturally in the terrestrial strata, and more or less petrified, that is, converted into stone. Fossils of the older formations are remains of organisms which, so far as species is concerned, are quite extinct; and only those of recent formations belong to genera living in our days. These fossil remains have neither the beauty nor the elegance of most living species, being mutilated, discoloured, and often almost shapeless; they are, therefore, interesting only in the eyes of the observer who would interrogate them, and who seeks to reconstruct, with their assistance, the Fauna and Flora of past ages. Nevertheless, the light they throw upon the past history of the earth is of the most satisfactory description, and the science of fossils, or palæontology, is now an important branch of geological inquiry. Fossil shells, in the more recent deposits, are found scarcely altered; in some cases only an impression of the external form is left—sometimes an entire cast of the shell, exterior and interior. In other cases the shell has left a perfect impression of its form in the surrounding mud, and has then been dissolved and washed away, leaving only its mould. This mould, again, has sometimes been filled up by calcareous spar, silica, or pyrites, and an exact cast of the original shell has thus been obtained. Petrified wood is also of very common occurrence.
These remains of an earlier creation had long been known to the curious, and classed as freaks of Nature, for so we find them described in the works of the ancient philosophers who wrote on natural history, and in the few treatises on the subject which the Middle Ages have bequeathed to us. Fossil bones, especially those of elephants, were known to the ancients, giving rise to all sorts of legends and fabulous histories: the tradition which attributed to Achilles, to Ajax, and to other heroes of the Trojan war, a height of twenty feet, is attributable, no doubt, to the discovery of the bones of elephants near their tombs. In the time of Pericles we are assured that in the tomb of Ajax a patella, or knee-bone of that hero, was found, which was as large as a dinner-plate. This was probably only the patella of a fossil elephant.
The uses to which fossils are applied by the geologist are—First, to ascertain the relative age of the formations in which they occur; secondly, the conditions under which these were deposited. The age of the formation is determined by a comparison of the fossils it contains with others of ascertained date; the conditions under which the rocks were deposited, whether marine, lacustrine, or terrestrial, are readily inferred from the nature of the fossils. The great artist, Leonardo da Vinci, was the first to comprehend the real meaning of fossils, and Bernard Palissy had the glory of being the first modern writer to proclaim the true character of the fossilised remains which are met with, in such numbers, in certain formations, both in France and Italy, particularly in those of Touraine, where they had come more especially under his notice. In his work on “Waters and Fountains,” published in 1580, he maintains that the figured stones, as fossils were then called, were the remains of organised beings preserved at the bottom of the sea. But the existence of marine shells upon the summits of mountains had already arrested the attention of ancient authors. Witness Ovid, who in Book XV. of the “Metamorphoses” tells us he had seen land formed at the expense of the sea, and marine shells lying dead far from the ocean; and more than that, an ancient anchor had been found on the very summit of a mountain.
Et procul a pelago conchæ jacuere marinæ,
Et vetus inventa est in montibus anchora summis.”
Ov., Met., Book xv.
The Danish geologist Steno, who published his principal works in Italy about the middle of the seventeenth century, had deeply studied the fossil shells discovered in that country. The Italian painter Scilla produced in 1670 a Latin treatise on the fossils of Calabria, in which he established the organic nature of fossil shells.
The eighteenth century gave birth to two very opposite theories as to the origin of our globe—namely, the Plutonian or igneous, and the Neptunian or aqueous theory. The Italian geologists gave a marked impulse to the study of fossils, and the name of Vallisneri[1] may be cited as the author to whom science is indebted for the earliest account of the marine deposits of Italy, and of the most characteristic organic remains which they contain. Lazzaro Moro[2] continued the studies of Vallisneri, and the monk Gemerelli reduced to a complete system the ideas of these two geologists, endeavouring to explain all the phenomena as Vallisneri had wished, “without violence, without fiction, without miracles.” Marselli and Donati both studied in a very scientific manner the fossil shells of Italy, and in particular those of the Adriatic, recognising the fact that they affected in their beds a regular and constant order of superposition.[3]
In France the celebrated Buffon gave, by his eloquent writings, great popularity to the notions of the Italian naturalists concerning the origin of fossil remains. In his admirable “Époques de la Nature” he sought to prove that the shells found in great quantities buried in the soil, and even on the tops of mountains, belonged, in reality, to species not living in our days. But this idea was too novel not to find objectors: it counted among its adversaries the bold philosopher who might have been expected to adopt it with most ardour. Voltaire attacked, with his jesting and biting criticism, the doctrines of the illustrious innovator. Buffon insisted, reasonably enough, that the presence of shells on the summit of the Alps was a proof that the sea had at one time occupied that position. But Voltaire asserted that the shells found on the Alps and Apennines had been thrown there by pilgrims returning from Rome. Buffon might have replied to his opponent, by pointing out whole mountains formed by the accumulation of these shells. He might have sent him to the Pyrenees, where shells of marine origin cover immense areas to a height of 6,600 feet above the present sea-level. But his genius was averse to controversy; and the philosopher of Ferney himself put an end to a discussion in which, perhaps, he would not have had the best of the argument. “I have no wish,” he wrote, “to embroil myself with Monsieur Buffon about shells.”
It was reserved for the genius of George Cuvier to draw from the study of fossils the most wonderful results: it is the study of these remains, in short, which, in conjunction with mineralogy, constitutes in these days positive geology. “It is to fossils,” says the great Cuvier, “that we owe the