You are here
قراءة كتاب The World Before the Deluge
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
Society, had his attention directed, as he himself informs us, to some of these beds on the banks of the Wye. After seven years of unremitting labour, he was rewarded by success. He established the fact that these sedimentary rocks, penetrated here and there by eruptive masses of igneous origin, formed a unique system, to which he gave the name of Silurian, because the rocks which he considered the most typical of the whole were most fully developed, charged with peculiar organic remains, in the land of the ancient Silures, who so bravely opposed the Roman invaders of their country. Many investigators have followed in Sir Roderick’s steps, but few men have so nobly earned the honours and fame with which his name is associated.
The success which attended Sir R. Murchison’s investigations soon attracted the attention of other geologists. Professor Sedgwick examined the older slaty strata, and succeeded in proving the position of the Cambrian rocks to be at the base of the Silurian. Still it was reserved for Sir William Logan, the Director of the Canadian Geological Survey, to establish the fact that immense masses of gneissic formation lay at the base of the Cambrian; and, by subsequent investigations, Sir Roderick Murchison satisfied himself that this formation was not confined to Canada, but was identical with the rocks termed by him Fundamental Gneiss, which exist in enormous masses on the west coast of Scotland, and which he proved to be the oldest stratified rocks in the British Isles. Subsequently he demonstrated the existence of these same Laurentian rocks in Bohemia and Bavaria, far beneath the Silurian rocks of Barrande.
While Murchison and Sedgwick were prosecuting their inquiries into the Silurian rocks, Hugh Miller and many others had their attention occupied with the Old Red Sandstone—the Devonian of Sedgwick and Murchison—which immediately overlies them. After a youth passed in wandering among the woods and rocks of his native Cromarty, the day came when Miller found himself twenty years of age, and, for the time, a workman in a quarry. A hard fate he thought it at the time, but to him it was the road to fame and success in life. The quarry in which he laboured was at the bottom of a bay formed by the mouth of a river opening to the south, a clear current of water on one side, as he vividly described it, and a thick wood on the other. In this silent spot, in the remote Highlands, a curious fossil fish of the Old Red Sandstone was revealed to him; its appearance struck him with astonishment; a fellow-workman named a spot where many such monuments of a former world were scattered about; he visited the place, and became a geologist and the historian of the “Old Red.” And what strange fantastic forms did it afterwards fall to his lot to describe! “The figures on a China vase or Egyptian obelisk,” he says, “differ less from the real representation of the objects than the fossil fishes of the ‘Old Red’ differ from the living forms which now swim in our seas.”
The Carboniferous Limestone, which underlies the coal, the Coal-measures themselves, the New Red Sandstone, the Lias, and the Chalk, have in their turn found their historians; but it would be foreign to our object to dwell further here on these particular branches of the subject.
Some few of the fossilised beings referred to resemble species still found living, but the greater part belong to species which have become altogether extinct. These fossil remains may constitute natural families, none of the genera of which have survived. Such is the Pterodactyle among Pterosaurian reptiles; the Ammonite among Mollusca; the Ichthyosaurus and the Plesiosaurus among the Enaliosaurian reptiles. At other times there are only extinct genera, belonging to families of which there are still some genera now living, as the genus Palæoniscus among fishes. Finally, in Tertiary deposits, we meet with some extinct species belonging to genera of our existing fauna: the Mammoth, for example, of the youngest Tertiary deposits, is an extinct species of the genus elephant.
Some fossils are terrestrial, like the gigantic Irish stag, Cervus Megaceros, the snail or Helix; fluviatile or lacustrine, like the Planorbis, the Lymnæa, the Physa, and the Unio; marine, or inhabiting the sea exclusively, as the Cowry (Cypræa), and the Oyster, (Ostrea).
Fossils are sometimes preserved in their natural state, or are but very slightly changed. Such is the state of some of the bones extracted from the more recent caves; such, also, is the condition of the insects found enclosed in the fossil resins in which they have been preserved from decomposition; and certain shells, found in recent and even in old formations, such as the Jurassic and Cretaceous strata—in some of which the shells retain their colours, as well as their brilliant pearly lustre or nacre. At Trouville, in Normandy, in the Kimeridge strata, magnificent Ammonites are found in the clay and marl, all brilliant with the colours of mother-of-pearl. In the Cretaceous beds at Machéroménil, some species of Ancyloceras and Hamites are found still covered with a nacre, displaying brilliant reflections of blue, green, and red, and retaining an admirable lustre. At Glos, near Liseaux, in the Coral Rag, not only the Ammonites, but the Trigoniæ and Aviculæ have preserved all their brilliant nacre. Sometimes these remains are much changed, the organic matter having entirely disappeared; it sometimes happens also, though rarely, that they become petrified, that is to say, the external form is preserved, but the original organic elements have wholly disappeared, and have been replaced by foreign mineral substances—generally by silica or by carbonate of lime.